10,235 research outputs found

    Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane

    Get PDF
    Engine-nozzle airframe integration at hypersonic speeds was conducted by using a high-speed research aircraft concept as a focus. Recently developed techniques for analysis of scramjet-nozzle exhaust flows provide a realistic analysis of complex forces resulting from the engine-nozzle airframe coupling. By properly integrating the engine-nozzle propulsive system with the airframe, efficient, controlled and stable flight results over a wide speed range

    Orbiter/launch system

    Get PDF
    The system includes reusable turbojet propelled booster vehicles releasably connected to a reusable rocket powered orbit vehicle. The coupled orbiter-booster combination takes off horizontally and ascends to staging altitude and speed under booster power with both orbiter and booster wings providing lift. After staging, the booster vehicles fly back to Earth for horizontal landing and the orbiter vehicle continues ascending to orbit

    Detecting periodicity in experimental data using linear modeling techniques

    Get PDF
    Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect periodicities in experimental data in the physical and biological sciences. We propose a new method which is more reliable than traditional techniques, and is able to make clear identification of periodic behavior when traditional techniques do not. This technique is based on an information theoretic reduction of linear (autoregressive) models so that only the essential features of an autoregressive model are retained. These models we call reduced autoregressive models (RARM). The essential features of reduced autoregressive models include any periodicity present in the data. We provide theoretical and numerical evidence from both experimental and artificial data, to demonstrate that this technique will reliably detect periodicities if and only if they are present in the data. There are strong information theoretic arguments to support the statement that RARM detects periodicities if they are present. Surrogate data techniques are used to ensure the converse. Furthermore, our calculations demonstrate that RARM is more robust, more accurate, and more sensitive, than traditional spectral techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified styl

    Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane

    Get PDF
    The configuration and performance of the propulsion system for the hypersonic research vehicle are discussed. A study of the interactions between propulsion and aerodynamics of the highly integrated vehicle was conducted. The hypersonic research vehicle is configured to test the technology of structural and thermal protection systems concepts and the operation of the propulsion system under true flight conditions for most of the hypersonic flight regime. The subjects considered are: (1) research vehicle and scramjet engine configurations to determine fundamental engine sizing constraints, (2) analytical methods for computing airframe and propulsion system components, and (3) characteristics of a candidate nozzle to investigate vehicle stability and acceleration performance

    Spatial accessibility and social inclusion: The impact of Portugal's last health reform

    Get PDF
    Health policies seek to promote access to health care and should provide appropriate geographical accessibility to each demographical functional group. The dispersal demand of health‐careservices and the provision for such services atfixed locations contribute to the growth of inequality intheir access. Therefore, the optimal distribution of health facilities over the space/area can lead toaccessibility improvements and to the mitigation of the social exclusion of the groups considered mostvulnerable. Requiring for such, the use of planning practices joined with accessibility measures. However,the capacities of Geographic Information Systems in determining and evaluating spatial accessibility inhealth system planning have not yet been fully exploited. This paper focuses on health‐care services planningbased on accessibility measures grounded on the network analysis. The case study hinges on mainlandPortugal. Different scenarios were developed to measure and compare impact on the population'saccessibility. It distinguishes itself from other studies of accessibility measures by integrating network data ina spatial accessibility measure: the enhanced two‐stepfloating catchment area. The convenient location forhealth‐care facilities can increase the accessibility standards of the population and consequently reducethe economic and social costs incurred. Recently, the Portuguese government implemented a reform thataimed to improve, namely, the access and equity in meeting with the most urgent patients. It envisaged,in terms of equity, the allocation of 89 emergency network points that ensured more than 90% of thepopulation be within 30 min from any one point in the network. Consequently, several emergency serviceswere closed, namely, in rural areas. This reform highlighted the need to improve the quality of the emergencycare, accessibility to each care facility, and equity in their access. Hence, accessibility measures becomean efficient decision‐making tool, despite its absence in effective practice planning. According to anapplication of this type of measure, it was possible to verify which levels of accessibility were decreased,including the most disadvantaged people, with a larger time of dislocation of 12 min between 2001 and 2011

    Alpha Activity During Lucid Dreaming

    Get PDF
    We have been interested in the electrophysiological correlates of lucid dreaming (LD) since early work in this laboratory suggested a relationship between lucidity and alpha activity (Ogilvie, Hunt, Sawicki &McGowan, 1978; Ogilvie, Hunt, Tyson, Lucescu & Jeakins, 1982; Tyson, Ogilvie, & Hunt, 1984). Until now, this alpha-lucidity hypothesis had not been tested in our lab on high frequency lucid dreamers who signal while in REM sleep, and LaBerge (1980; 1981) has not observed any changes in alpha in signalled episodes of lucidity. The present report describes computer analyses of EEG activity obtained during eight laboratory nights from a frequent lucid dreamer. In addition to standard polysomnographic measures, CCTV monitoring with two cameras and a screen splitter permitted simultaneous display and videotaping of the subject's (RJS's) face and concurrent polygraphic activity. This was particularly useful during REM, since RJS had trained himself to sleep on his back and to try to signal from that position. In the month prior to the lab nights, RJS spend over an hour per day meditating. He also used LaBerge's lucidity induction or cognitive self-instruction techniques and reported LD rates in excess of one per night. He practiced signalling (using three blinks/ rapid vertical eye movements) and thought he had successfully signalled several LDs while at home

    The Patient Assessment of Chronic Illness Care produces measurements along a single dimension: results from a Mokken analysis.

    Get PDF
    BACKGROUND: As the worldwide prevalence of chronic illness increases so too does the demand for novel treatments to improve chronic illness care. Quantifying improvement in chronic illness care from the patient perspective relies on the use of validated patient-reported outcome measures. In this analysis we examine the psychometric and scaling properties of the Patient Assessment of Chronic Illness Care (PACIC) questionnaire for use in the United Kingdom by applying scale data to the non-parametric Mokken double monotonicity model. METHODS: Data from 1849 patients with long-term conditions in the UK who completed the 20-item PACIC were analysed using Mokken analysis. A three-stage analysis examined the questionnaire's scalability, monotonicity and item ordering. An automated item selection procedure was used to assess the factor structure of the scale. Analysis was conducted in an 'evaluation' dataset (n = 956) and results were confirmed using an independent 'validation' (n = 890) dataset. RESULTS: Automated item selection procedures suggested that the 20 items represented a single underlying trait representing "patient assessment of chronic illness care": this contrasts with the multiple domains originally proposed. Six items violated invariant item ordering and were removed. The final 13-item scale had no further issues in either the evaluation or validation samples, including excellent scalability (Ho = .50) and reliability (Rho = .88). CONCLUSIONS: Following some modification, the 13-items of the PACIC were successfully fitted to the non-parametric Mokken model. These items have psychometrically robust and produce a single ordinal summary score. This score will be useful for clinicians or researchers to assess the quality of chronic illness care from the patient's perspective

    Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion

    Get PDF
    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of predicting and simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred
    corecore