55 research outputs found
Cloud Dispersal in Turbulent Flows
Cold clouds embedded in warm media are very common objects in astrophysics.
Their disruption timescale depends strongly on the dynamical configuration. We
discuss the evolution of an initially homogeneous cold cloud embedded in warm
turbulent gas. Within a couple of dynamical timescales, the filling factor of
the cold gas within the original cloud radius drops below 50%. Turbulent
diffusivities estimated from the time evolution of radial filling factor
profiles are not constant with time. Cold and warm gas are bodily transported
by turbulence and mixed. This is only mildly indicated by column density maps.
The radiation field within the cloud, however, increases by several orders of
magnitudes due to the mixing, with possible consequences for cloud chemistry
and evolution within a few dynamical timescales.Comment: 11 pages, 12 figures, accepted by MNRA
Building Merger Trees from Cosmological N-body Simulations
Although a fair amount of work has been devoted to growing Monte-Carlo merger
trees which resemble those built from an N-body simulation, comparatively
little effort has been invested in quantifying the caveats one necessarily
encounters when one extracts trees directly from such a simulation. To somewhat
revert the tide, this paper seeks to provide its reader with a comprehensive
study of the problems one faces when following this route. The first step to
building merger histories of dark matter haloes and their subhaloes is to
identify these structures in each of the time outputs (snapshots) produced by
the simulation. Even though we discuss a particular implementation of such an
algorithm (called AdaptaHOP) in this paper, we believe that our results do not
depend on the exact details of the implementation but extend to most if not all
(sub)structure finders. We then highlight different ways to build merger
histories from AdaptaHOP haloes and subhaloes, contrasting their various
advantages and drawbacks. We find that the best approach to (sub)halo merging
histories is through an analysis that goes back and forth between
identification and tree building rather than one which conducts a
straightforward sequential treatment of these two steps. This is rooted in the
complexity of the merging trees which have to depict an inherently dynamical
process from the partial temporal information contained in the collection of
instantaneous snapshots available from the N-body simulation.Comment: 19 pages, 28 figure
Magnetized Non-linear Thin Shell Instability: Numerical Studies in 2D
We revisit the analysis of the Non-linear Thin Shell Instability (NTSI)
numerically, including magnetic fields. The magnetic tension force is expected
to work against the main driver of the NTSI -- namely transverse momentum
transport. However, depending on the field strength and orientation, the
instability may grow. For fields aligned with the inflow, we find that the NTSI
is suppressed only when the Alfv\'en speed surpasses the (supersonic)
velocities generated along the collision interface. Even for fields
perpendicular to the inflow, which are the most effective at preventing the
NTSI from developing, internal structures form within the expanding slab
interface, probably leading to fragmentation in the presence of self-gravity or
thermal instabilities. High Reynolds numbers result in local turbulence within
the perturbed slab, which in turn triggers reconnection and dissipation of the
excess magnetic flux. We find that when the magnetic field is initially aligned
with the flow, there exists a (weak) correlation between field strength and gas
density. However, for transverse fields, this correlation essentially vanishes.
In light of these results, our general conclusion is that instabilities are
unlikely to be erased unless the magnetic energy in clouds is much larger than
the turbulent energy. Finally, while our study is motivated by the scenario of
molecular cloud formation in colliding flows, our results span a larger range
of applicability, from supernovae shells to colliding stellar winds.Comment: 12 pages, 17 figures, some of them at low resolution. Submitted to
ApJ, comments welcom
Reionization history constraints from neural network based predictions of high-redshift quasar continua
Observations of the early Universe suggest that reionization was complete by
, however, the exact history of this process is still unknown. One
method for measuring the evolution of the neutral fraction throughout this
epoch is via observing the Ly damping wings of high-redshift quasars.
In order to constrain the neutral fraction from quasar observations, one needs
an accurate model of the quasar spectrum around Ly, after the spectrum
has been processed by its host galaxy but before it is altered by absorption
and damping in the intervening IGM. In this paper, we present a novel machine
learning approach, using artificial neural networks, to reconstruct quasar
continua around Ly. Our QSANNdRA algorithm improves the error in this
reconstruction compared to the state-of-the-art PCA-based model in the
literature by 14.2% on average, and provides an improvement of 6.1% on average
when compared to an extension thereof. In comparison with the extended PCA
model, QSANNdRA further achieves an improvement of 22.1% and 16.8% when
evaluated on low-redshift quasars most similar to the two high-redshift quasars
under consideration, ULAS J1120+0641 at and ULAS J1342+0928 at
, respectively. Using our more accurate reconstructions of these two
quasars, we estimate the neutral fraction of the IGM using a homogeneous
reionization model and find at
and at . Our
results are consistent with the literature and favour a rapid end to
reionization
Forming stars on a viscous timescale: the key to exponential stellar profiles in disk galaxies?
We argue for implementing star formation on a viscous timescale in hydrodynamical simulations of disk galaxy formation and evolution. Modelling two-dimensional isolated disk galaxies with the Bhatnagar-Gross-Krook (BGK) hydrocode, we verify the analytic claim of various authors that if the characteristic timescale for star formation is equal to the viscous timescale in disks, the resulting stellar profile is exponential on several scale lengths whatever the initial gas and dark matter profile. This casts new light on both numerical and semi-analytical disk formation simulations which either (a) commence star formation in an already exponential gaseous disk, (b) begin a disk simulation with conditions known to lead to an exponential, i.e. the collapse of a spherically symmetric nearly uniform sphere of gas in solid body rotation under the assumption of specific angular momentum conservation, or (c) in simulations performed in a hierarchical context, tune their feedback processes to delay disk formation until the dark matter halos are slowly evolving and without much substructure so that the gas has the chance to collapse under conditions known to give exponentials. In such models, star formation follows a Schmidt-like law, which for lack of a suitable timescale, resorts to an efficiency parameter. With star formation prescribed on a viscous timescale however, we find gas and star fractions after 12 Gyr that are consistent with observations without having to invoke any ``fudge factor'' for star formation. Our results strongly suggest that despite our gap in understanding the exact link between star formation and viscosity, the viscous timescale is indeed the natural timescale for star formation
Star Formation in Viscous Galaxy Disks
The Lin and Pringle model (1987) of galactic disk formation postulates that if star formation proceeds on the same timescale as the viscous redistribution of mass and angular momentum in disk galaxies, then the stars attain an exponential density profile. Their claim is that this result holds generally: regardless of the disk galaxy's initial gas and dark matter distribution and independent of the nature of the viscous processes acting in the disk. We present new results from a set of 2D hydro-simulations which investigate their analytic result
Formation of Structure in Molecular Clouds: A Case Study
Molecular clouds (MCs) are highly structured and ``turbulent''. Colliding gas
streams of atomic hydrogen have been suggested as a possible source of MCs,
imprinting the filamentary structure as a consequence of dynamical and thermal
instabilities. We present a 2D numerical analysis of MC formation via
converging HI flows. Even with modest flow speeds and completely uniform
inflows, non-linear density perturbations as possible precursors of MCs arise.
Thus, we suggest that MCs are inevitably formed with substantial structure,
e.g., strong density and velocity fluctuations, which provide the initial
conditions for subsequent gravitational collapse and star formation in a
variety of galactic and extragalactic environments.Comment: 4 pages, 5 figures, resubmitted to ApJ
Galaxy merger histories and the role of merging in driving star formation at z>1
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We use Horizon-AGN, a hydrodynamical cosmological simulation, to explore the role of mergers in the evolution of massive (M > 10^10 MSun) galaxies around the epoch of peak cosmic star formation (1zR(4:1 3 are 'blue' (i.e. have significant associated star formation), the proportion of 'red' mergers increases rapidly at ztodays stellar mass was formed.Peer reviewe
Intrinsic alignment of simulated galaxies in the cosmic web: implications for weak lensing surveys
The intrinsic alignment of galaxy shapes (by means of their angular momentum) and their cross-correlation with the surrounding dark matter tidal field are investigated using the 160000, z=1.2 synthetic galaxies extracted from the high-resolution cosmological hydrodynamical simulation horizon-agn. One- and two-point statistics of the spin of the stellar component are measured as a function of mass and colour. For the low-mass galaxies, this spin is locally aligned with the tidal field âfilamentary' direction while, for the high-mass galaxies, it is perpendicular to both filaments and walls. The bluest galaxies of our synthetic catalogue are more strongly correlated with the surrounding tidal field than the reddest galaxies, and this correlation extends up toâŒ10hâ 1âMpc comoving distance. We also report a correlation of the projected ellipticities of blue, intermediate-mass galaxies on a similar scale at a level of 10â4 which could be a concern for cosmic shear measurements. We do not report any measurable intrinsic alignments of the reddest galaxies of our sample. This work is a first step towards the use of very realistic catalogue of synthetic galaxies to evaluate the contamination of weak lensing measurement by the intrinsic galactic alignment
Galaxies in box: A simulated view of the interstellar medium
We review progress in the development of physically realistic three
dimensional simulated models of the galaxy.We consider the scales from star
forming molecular clouds to the full spiral disc. Models are computed using
hydrodynamic (HD) or magnetohydrodynamic (MHD) equations and may include cosmic
ray or tracer particles. The range of dynamical scales between the full galaxy
structure and the turbulent scales of supernova (SN) explosions and even cloud
collapse to form stars, make it impossible with current computing tools and
resources to resolve all of these in one model. We therefore consider a
hierarchy of models and how they can be related to enhance our understanding of
the complete galaxy.Comment: Chapter in Large Scale Magnetic Fields in the Univers
- âŠ