53 research outputs found

    Bound states of edge dislocations: The quantum dipole problem in two dimensions

    Full text link
    We investigate bound state solutions of the 2D Schr\"odinger equation with a dipole potential originating from the elastic effects of a single edge dislocation. The knowledge of these states could be useful for understanding a wide variety of physical systems, including superfluid behavior along dislocations in solid 4^4He. We present a review of the results obtained by previous workers together with an improved variational estimate of the ground state energy. We then numerically solve the eigenvalue problem and calculate the energy spectrum. In our dimensionless units, we find a ground state energy of -0.139, which is lower than any previous estimate. We also make successful contact with the behavior of the energy spectrum as derived from semiclassical considerations.Comment: 6 pages, 3 figures, submitted to PR

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    Analysis of the rotation period of asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger - search for the YORP effect

    Full text link
    The spin state of small asteroids can change on a long timescale by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises from anisotropically scattered sunlight and proper thermal radiation from an irregularly-shaped asteroid. The secular change in the rotation period caused by the YORP effect can be detected by analysis of asteroid photometric lightcurves. We analyzed photometric lightcurves of near-Earth asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible deviations from the constant rotation caused by the YORP effect. We carried out new photometric observations of the three asteroids, combined the new lightcurves with archived data, and used the lightcurve inversion method to model the asteroid shape, pole direction, and rotation rate. The YORP effect was modeled as a linear change in the rotation rate in time d\omega /dt. Values of d\omega/ dt derived from observations were compared with the values predicted by theory. We derived physical models for all three asteroids. We had to model Eger as a nonconvex body because the convex model failed to fit the lightcurves observed at high phase angles. We probably detected the acceleration of the rotation rate of Eger d\omega / dt = (1.4 +/- 0.6) x 10^{-8} rad/d (3\sigma error), which corresponds to a decrease in the rotation period by 4.2 ms/yr. The photometry of Cerberus and Ra-Shalom was consistent with a constant-period model, and no secular change in the spin rate was detected. We could only constrain maximum values of |d\omega / dt| < 8 x 10^{-9} rad/d for Cerberus, and |d\omega / dt| < 3 x 10^{-8} rad/d for Ra-Shalom

    Kharkiv database of asteroid absolute magnitudes : Comparative analysis with other datasets

    Get PDF
    We present a database of the absolute magnitudes of asteroids named the Kharkiv Asteroid Absolute Magnitude Database (KhAAMD). The database includes a homogeneous set of the absolute magnitudes for about 400 asteroids in the new HG(1)G(2) magnitude system. We performed a comparative analysis of the asteroid absolute magnitudes between the Kharkiv database and other main magnitude databases (MPC, Pan-STARRS, ATLAS, PTF, and Gaia). We show that the Pan-STARRS absolute magnitude dataset has no systematic deviations and is the most suitable for the determination of diameters and albedos of asteroids. For the MPC dataset, there is a linear trend of overestimating the absolute magnitudes of bright objects and underestimating the magnitudes of faint asteroids. The ATLAS dataset has both a systematic overestimation of asteroid magnitudes and a linear trend. We propose equations that can be used to correct for systematic errors in the MPC and the ATLAS magnitude datasets. There are possible systematic deviations of about 0.1 mag for the Gaia and PTF databases but there are insufficient data overlapping with our data for a definitive analysis.Peer reviewe

    Multi-wavelength observations of afterglow of GRB 080319B and the modeling constraints

    Get PDF
    We present observations of the afterglow of GRB 080319B at optical, mm and radio frequencies from a few hours to 67 days after the burst. Present observations along with other published multi-wavelength data have been used to study the light-curves and spectral energy distributions of the burst afterglow. The nature of this brightest cosmic explosion has been explored based on the observed properties and it's comparison with the afterglow models. Our results show that the observed features of the afterglow fits equally good with the Inter Stellar Matter and the Stellar Wind density profiles of the circum-burst medium. In case of both density profiles, location of the maximum synchrotron frequency νm\nu_m is below optical and the value of cooling break frequency νc\nu_c is below XX-rays, 104\sim 10^{4}s after the burst. Also, the derived value of the Lorentz factor at the time of naked eye brightness is 300\sim 300 with the corresponding blast wave size of 1018\sim 10^{18} cm. The numerical fit to the multi-wavelength afterglow data constraints the values of physical parameters and the emission mechanism of the burst.Comment: 8 Pages, 3 Figures, Accepted for publication to Astronomy and Astrophysics on 02/04/200

    Roadmap towards the redefinition of the second

    Get PDF
    This paper outlines the roadmap towards the redefinition of the second, which was recently updated by the CCTF Task Force created by the CCTF in 2020. The main achievements of optical frequency standards (OFS) call for reflection on the redefinition of the second, but open new challenges related to the performance of the OFS, their contribution to time scales and UTC, the possibility of their comparison, and the knowledge of the Earth's gravitational potential to ensure a robust and accurate capacity to realize a new definition at the level of 10-18 uncertainty. The mandatory criteria to be achieved before redefinition have been defined and their current fulfilment level is estimated showing the fields that still needed improvement. The possibility to base the redefinition on a single or on a set of transitions has also been evaluated. The roadmap indicates the steps to be followed in the next years to be ready for a sound and successful redefinition
    corecore