205 research outputs found

    Differential activation of JNK1 isoforms by TRAIL receptors modulate apoptosis of colon cancer cell lines

    Get PDF
    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis on binding to its receptors, death receptor 4 and 5 (DR4, DR5). TRAIL can also activate c-Jun N-terminal kinase (JNK) through the adaptor molecules, TNF receptor-associated factor 2 (TRAF2) and receptor-interacting protein (RIP). The role of JNK in TRAIL-induced tumour cell apoptosis is unclear. In this study, we demonstrate that JNK is activated by TRAIL in colon cancer cells. Inhibition of JNK with L-JNKI reduced rhTRAIL-induced cell death but enhanced cell death induced by selective activation of DR4 or DR5. This difference was unrelated to receptor internalisation or differential activation of c-Jun, but activation of different JNK isoforms. Our data demonstrate that JNK1, but not JNK2 is activated by rhTRAIL in the examined colon cancer cell lines. Although rhTRAIL activated both the long and short isoforms of JNK1, selective activation of DR4 or DR5 led to predominant activation of the short JNK1 isoforms (JNK1Ξ±1 and/or JNK1Ξ²1). Knockdown of JNK1Ξ±1 by shRNA enhanced apoptosis induced by TRAIL, agonistic DR4 or DR5 antibodies. On the other hand, knockdown of the long JNK1 isoforms (JNK1Ξ±2 and JNK1Ξ²2) had the opposite effect; it reduced TRAIL-induced cell death. These data indicate that the short JNK1 isoforms transmit an antiapoptotic signal, whereas the long isoforms (JNK1Ξ±2 or JNK1Ξ²2) act in a proapoptotic manner

    Loss of p53 Ser18 and Atm Results in Embryonic Lethality without Cooperation in Tumorigenesis

    Get PDF
    Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53S18A mice) have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atmβˆ’/βˆ’ animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53S18A and Atmβˆ’/βˆ’ animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atmβˆ’/βˆ’ animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination

    Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch

    Get PDF
    During male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous synapsis, they too undergo MSCI, albeit only transiently. The W chromosome is already inactive in early meiotic prophase, and inactive chromatin marks may spread on to the Z upon synapsis. Mammalian MSCI is considered as a specialised form of the general meiotic silencing mechanism, named meiotic silencing of unsynapsed chromatin (MSUC). Herein, we studied the avian form of MSUC, by analysing the behaviour of the peculiar germline restricted chromosome (GRC) that is present as a single copy in zebra finch spermatocytes. In the female germline, this chromosome is present in two copies, which normally synapse and recombine. In contrast, during male meiosis, the single GRC is always eliminated. We found that the GRC in the male germline is silenced from early leptotene onwards, similar to the W chromosome in avian oocytes. The GRC remains largely unsynapsed throughout meiotic prophase I, although patches of SYCP1 staining indicate that part of the GRC may self-synapse. In addition, the GRC is largely devoid of meiotic double strand breaks. We observed a lack of the inner centromere protein INCENP on the GRC and elimination of the GRC following metaphase I. Subsequently, the GRC forms a micronucleus in which the DNA is fragmented. We conclude that in contrast to MSUC in mammals, meiotic silencing of this single chromosome in the avian germline occurs prior to, and independent of DNA double strand breaks and chromosome pairing, hence we have named this phenomenon meiotic silencing prior to synapsis (MSPS)

    A Quantitative RNAi Screen for JNK Modifiers Identifies Pvr as a Novel Regulator of Drosophila Immune Signaling

    Get PDF
    Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-ΞΊB and caspase modules. While many modifiers of NF-ΞΊB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-ΞΊB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling

    Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers

    Get PDF
    International audienceBACKGROUND:Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease.RESULTS:Here, we demonstrate that activation of the immune system in honey bees (using bacterial lipopolysaccharides as a non-replicative pathogen) alters the social responses of healthy nestmates toward the treated individuals. Furthermore, treated individuals expressed significant differences in overall cuticular hydrocarbon profiles compared with controls. Finally, coating healthy individuals with extracts containing cuticular hydrocarbons of immunostimulated individuals significantly increased the agonistic responses of nestmates.CONCLUSION:Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony

    Directive versus empowering leadership: A field experiment comparing impacts on task proficiency and proactivity

    Get PDF
    Using a field experiment in the United Arab Emirates, we compared the impacts of directive and empowering leadership on customer-rated core task proficiency and proactive behaviors. Results of tests for main effects demonstrated that both directive and empowering leadership increased work unit core task proficiency, but only empowering leadership increased proactive behaviors. Examination of boundary conditions revealed that directive leadership enhanced proactive behaviors for work units that were highly satisfied with their leaders, whereas empowering leadership had stronger effects on both core task proficiency and proactive behaviors for work units that were less satisfied with their leaders. We discuss implications for both theory and practice. Β© Academy of Management Journal

    Structural basis for DNA damage-induced phosphoregulation of MDM2 RING domain

    Get PDF
    Phosphorylation of MDM2 by ATM upon DNA damage is an important mechanism for deregulating MDM2, thereby leading to p53 activation. ATM phosphorylates multiple residues near the RING domain of MDM2, but the underlying molecular basis for deregulation remains elusive. Here we show that Ser429 phosphorylation selectively enhances the ubiquitin ligase activity of MDM2 homodimer but not MDM2-MDMX heterodimer. A crystal structure of phospho-Ser429 (pS429)-MDM2 bound to E2–ubiquitin reveals a unique 310-helical feature present in MDM2 homodimer that allows pS429 to stabilize the closed E2–ubiquitin conformation and thereby enhancing ubiquitin transfer. In cells Ser429 phosphorylation increases MDM2 autoubiquitination and degradation upon DNA damage, whereas S429A substitution protects MDM2 from auto-degradation. Our results demonstrate that Ser429 phosphorylation serves as a switch to boost the activity of MDM2 homodimer and promote its self-destruction to enable rapid p53 stabilization and resolve a long-standing controversy surrounding MDM2 auto-degradation in response to DNA damage

    Respectful leadership:Reducing performance challenges posed by leader role incongruence and gender dissimilarity

    Get PDF
    We investigate how respectful leadership can help overcome the challenges for follower performance that female leaders face when working (especially with male) followers. First, based on role congruity theory, we illustrate the biases faced by female leaders. Second, based on research on gender (dis-)similarity, we propose that these biases should be particularly pronounced when working with a male follower. Finally, we propose that respectful leadership is most conducive to performance in female leader–male follower dyads compared with all other gender configurations. A multi-source field study (N = 214) provides partial support for our hypothesis. While our hypothesized effect was confirmed, respectful leadership seems to be generally effective for female leaders irrespective of follower gender, thus lending greater support in this context to the arguments of role congruity rather than gender dissimilarity

    Systematic Identification of Genes that Regulate Neuronal Wiring in the Drosophila Visual System

    Get PDF
    Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring

    A Framework for Evaluating Biomarkers for Early Detection: Validation of Biomarker Panels for Ovarian Cancer

    Get PDF
    A panel of biomarkers may improve predictive performance over individual markers. Although many biomarker panels have been described for ovarian cancer, few studies used pre-diagnostic samples to assess the potential of the panels for early detection. We conducted a multi-site systematic evaluation of biomarker panels using pre-diagnostic serum samples from the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) screening trial
    • …
    corecore