7 research outputs found

    Serological identification and expression analysis of gastric cancer-associated genes

    Get PDF
    Serological identification of tumour antigens by recombinant expression cloning has proved to be an effective strategy for the identification of cancer-associated genes having a relevance to cancer aetiology and progression, and for defining possible targets for immunotherapeutic intervention. In the present study we applied this technique to identify immunogenic proteins for gastric cancer that resulted in isolation of 14 distinct serum-reactive antigens. In order to evaluate their role in tumourigenesis and assess the immunogenicity of the identified antigens, we characterised each cDNA clone by DNA sequence analysis, mRNA tissue distribution, comparison of mRNA levels in cancerous and adjacent non-cancerous tissues and the frequency of antibody responses in allogeneic patient and control sera. Previously unknown splice variants of TACC1 and an uncharacterised gene Ga50 were identified. The expression of a newly identified TACC1 isoform is restricted to brain and gastric cancer tissues. Comparison of mRNA levels by semi-quantitative RT–PCR revealed a relative overexpression of three genes in cancer tissues, including growth factor granulin and Tbdn-1 – an orthologue of the mouse acetyltransferase gene which is associated with blood vessel development. An unusual DNA polymorphism – a three-nucleotide deletion was found in NUCB2 cDNA but its mRNA level was consistently decreased in gastric tumours compared with that in the adjacent non-cancerous tissues. This study has revealed several new gastric cancer candidate genes; additional studies are required to gain a deeper insight into their role in the tumorigenesis and their potential as therapeutic targets

    The Tunka detector complex: from cosmic-ray to gamma-ray astronomy

    No full text
    TAIGA stands for “Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy” and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for ”PeVatrons” (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array

    The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka Valley: Design, composition and commissioning

    No full text
    The new TAIGA-HiSCORE non-imaging Cherenkov array aims to detect air showers induced by gamma rays above 30 TeV and to study cosmic rays above 100 TeV. TAIGA-HiSCORE is made of integrating air Cherenkov detector stations with a wide field of view (0.6 sr), placed at a distance of about 100 m. They cover an area of initially ∼0.25 km2^2 (prototype array), and of ∼5 km2^2 at the final phase of the experiment. Each station includes 4 PMTs with 20 or 25 cm diameter, equipped with light guides shaped as Winstone cones. We describe the design, specifications of the read-out, DAQ and control and monitoring systems of the array. The present 28 detector stations of the TAIGA-HiSCORE engineering setup are in operation since September 2015

    The TAIGA experiment: from cosmic ray to gamma-ray astronomy in the Tunka valley

    Get PDF
    The physical motivations and advantages of the new gamma-observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is presented. The TAIGA array is a complex, hybrid detector for ground-based gamma-ray astronomy for energies from a few TeV to several PeV as well as for cosmic ray studies from 100 TeV to several EeV. The TAIGA will include the wide angle Cherenkov array TAIGA-HiSCORE with ~5 km(2) area, a net of 16 I ACT telescopes (with FOV of about 10x10 degree), muon detectors with a total area of up to 2000-3000 m(2) and the radio array Tunka-Rex
    corecore