316 research outputs found

    Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview

    Get PDF
    Thanks to innovative sample-preparation and sequencing technologies, gene expression in individual cells can now be measured for thousands of cells in a single experiment. Since its introduction, single-cell RNA sequencing (scRNA-seq) approaches have revolutionized the genomics field as they created unprecedented opportunities for resolving cell heterogeneity by exploring gene expression profiles at a single-cell resolution. However, the rapidly evolving field of scRNA-seq invoked the emergence of various analytics approaches aimed to maximize the full potential of this novel strategy. Unlike population-based RNA sequencing approaches, scRNA seq necessitates comprehensive computational tools to address high data complexity and keep up with the emerging single-cell associated challenges. Despite the vast number of analytical methods, a universal standardization is lacking. While this reflects the fields’ immaturity, it may also encumber a newcomer to blend in. In this review, we aim to bridge over the abovementioned hurdle and propose four ready-to-use pipelines for scRNA-seq analysis easily accessible by a newcomer, that could fit various biological data types. Here we provide an overview of the currently available single-cell technologies for cell isolation and library preparation and a step by step guide that covers the entire canonical analytic workflow to analyse scRNA-seq data including read mapping, quality controls, gene expression quantification, normalization, feature selection, dimensionality reduction, and cell clustering useful for trajectory inference and differential expression. Such workflow guidelines will escort novices as well as expert users in the analysis of complex scRNA-seq datasets, thus further expanding the research potential of single-cell approaches in basic science, and envisaging its future implementation as best practice in the field

    Decision-making Processes among Prostate Cancer Survivors with Rising PSA Levels: Results from a Qualitative Analysis

    Get PDF
    Background. Prostate cancer survivors with a rising prostate-specific antigen (PSA) level have few treatment options, experience a heightened state of uncertainty about their disease trajectory that might include the possibility of cancer metastasis and death, and often experience elevated levels of distress as they have to deal with a disease they thought they had conquered. Guided by self-regulation theory, the present study examined the cognitive and affective processes involved in shared decision making between physicians and patients who experience a rising PSA after definitive treatment for prostate cancer. Methods. In-depth interviews were conducted with 34 prostate cancer survivors who had been diagnosed with a rising PSA (i.e., biochemical failure) within the past 12 months. Survivors were asked about their experiences and affective responses after being diagnosed with a rising PSA and while weighing potential treatment options. In addition, patients were asked about their decision-making process for the initial prostate cancer treatment. Results. Compared with the initial diagnosis, survivors with a rising PSA reported increased negative affect following their diagnosis, concern about the treatability of their disease, increased planning and health behavior change, heightened levels of worry preceding doctor appointments (especially prior to the discussion of PSA testing results), and a strong reliance on physicians\u27 treatment recommendations. Conclusions. Prostate cancer survivors\u27 decision-making processes for the treatment of a rising PSA are markedly different from those of the initial diagnosis of prostate cancer. Because patients experience heightened distress and rely more heavily on their physicians\u27 recommendations with a rising PSA, interactions with the health care provider provide an excellent opportunity to address and assist patients with managing the uncertainty and distress inherent with rising PSA levels

    A Clinician\u27s Guide to Next Generation Imaging in Patients With Advanced Prostate Cancer (RADAR III).

    Get PDF
    PURPOSE: The advanced prostate cancer therapeutic landscape has changed dramatically in the last several years, resulting in improved overall survival of patients with castration naïve and castration resistant disease. The evolution and development of novel next generation imaging techniques will affect diagnostic and therapeutic decision making. Clinicians must navigate when and which next generation imaging techniques to use and how to adjust treatment strategies based on the results, often in the absence of correlative therapeutic data. Therefore, guidance is needed based on best available information and current clinical experience. MATERIALS AND METHODS: The RADAR (Radiographic Assessments for Detection of Advanced Recurrence) III Group convened to offer guidance on the use of next generation imaging to stage prostate cancer based on available data and clinical experience. The group also discussed the potential impact of next generation imaging on treatment options based on earlier detection of disease. RESULTS: The group unanimously agreed that progression to metastatic disease is a seminal event for patient treatment. Next generation imaging techniques are able to detect previously undetectable metastases, which could redefine the phases of prostate cancer progression. Thus, earlier systemic or locally directed treatment may positively alter patient outcomes. CONCLUSIONS: The RADAR III Group recommends next generation imaging techniques in select patients in whom disease progression is suspected based on laboratory (biomarker) values, comorbidities and symptoms. Currently 18F-fluciclovine and 68Ga prostate specific membrane antigen positron emission tomography/computerized tomography are the next generation imaging agents with a favorable combination of availability, specificity and sensitivity. There is ongoing research of additional next generation imaging technologies, which may offer improved diagnostic accuracy and therapeutic options. As next generation imaging techniques evolve and presumably result in improved global accessibility, clinician ability to detect micrometastases may be enhanced for decision making and patient outcomes

    Pharmacodynamic and Clinical Results from a Phase I/II Study of the HSP90 Inhibitor Onalespib in Combination with Abiraterone Acetate in Prostate Cancer.

    Get PDF
    PURPOSE:Onalespib is a potent, fragment-derived second-generation HSP90 inhibitor with preclinical activity in castration-resistant prostate cancer (CPRC) models. This phase I/II trial evaluated onalespib in combination with abiraterone acetate (AA) and either prednisone or prednisolone (P) in men with CRPC progressing on AA/P. PATIENTS AND METHODS:Patients with progressing CRPC were randomly assigned to receive 1 of 2 regimens of onalespib combined with AA/P. Onalespib was administered as intravenous infusion starting at 220 mg/m2 once weekly for 3 of 4 weeks (regimen 1); or at 120 mg/m2 on day 1 and day 2 weekly for 3 of 4 weeks (regimen 2). Primary endpoints were response rate and safety. Secondary endpoints included evaluation of androgen receptor (AR) depletion in circulating tumor cells (CTC) and in fresh tumor tissue biopsies. RESULTS:Forty-eight patients were treated with onalespib in combination with AA/P. The most common ≥grade 3 toxicities related to onalespib included diarrhea (21%) and fatigue (13%). Diarrhea was dose limiting at 260 and 160 mg/m2 for regimens 1 and 2, respectively. Transient decreases in CTC counts and AR expression in CTC were observed in both regimens. HSP72 was significantly upregulated following onalespib treatment, but only a modest decrease in AR and GR was shown in paired pre- and posttreatment tumor biopsy samples. No patients showed an objective or PSA response. CONCLUSIONS:Onalespib in combination with AA/P showed mild evidence of some biological effect; however, this effect did not translate into clinical activity, hence further exploration of this combination was not justified

    Replication competent retrovirus testing (RCR) in the National Gene Vector Biorepository: No evidence of RCR in 1,595 post-treatment peripheral blood samples obtained from 60 clinical trials

    Get PDF
    The clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement. To date, we have found no evidence of RCR in 338 pre-treatment and 1,595 post-treatment blood samples from 737 patients associated with 60 clinical trials. Most samples (75%) were obtained within 1 year of treatment, and samples as far out as 9 years after treatment were analyzed. The majority of trials (93%) were cancer immunotherapy, and 90% of the trials used vector products produced with the PG13 packaging cell line. The data presented here provide further evidence that current manufacturing methods generate RCR-free products and support the overall safety profile of retroviral gene therapy

    Facile Preparation of Fluorescent Neoglycoproteins Using p-Nitrophenyl Anthranilate as a Heterobifunctional Linker

    Get PDF
    A facile preparation of neoglycoconjugates has been developed with a commercially available chemical, p-nitrophenyl anthranilate (PNPA), as a heterobifunctional linker. The two functional groups of PNPA, the aromatic amine and the p-nitrophenyl ester, are fully differentiated to selectively conjugate with glycans and other biomolecules containing nucleophiles. PNPA is efficiently conjugated with free reducing glycans via reductive amination. The glycan−PNPA conjugates (GPNPAs) can be easily purified and quantified by UV absorption. The active p-nitrophenyl ester in the GPNPA conjugates readily reacts with amines under mild conditions, and the resulting conjugates acquire strong fluorescence. This approach was used to prepare several fluorescent neoglycoproteins. The neoglycoproteins were covalently printed on activated glass slides and were bound by appropriate lectins recognizing the glycans

    DNA vaccination for prostate cancer: key concepts and considerations

    Get PDF
    While locally confined prostate cancer is associated with a low five year mortality rate, advanced or metastatic disease remains a major challenge for healthcare professionals to treat and is usually terminal. As such, there is a need for the development of new, efficacious therapies for prostate cancer. Immunotherapy represents a promising approach where the host’s immune system is harnessed to mount an anti-tumour effect, and the licensing of the first prostate cancer specific immunotherapy in 2010 has opened the door for other immunotherapies to gain regulatory approval. Among these strategies DNA vaccines are an attractive option in terms of their ability to elicit a highly specific, potent and wide-sweeping immune response. Several DNA vaccines have been tested for prostate cancer and while they have demonstrated a good safety profile they have faced problems with low efficacy and immunogenicity compared to other immunotherapeutic approaches. This review focuses on the positive aspects of DNA vaccines for prostate cancer that have been assessed in preclinical and clinical trials thus far and examines the key considerations that must be employed to improve the efficacy and immunogenicity of these vaccines

    Harnessing Naturally Occurring Tumor Immunity: A Clinical Vaccine Trial in Prostate Cancer

    Get PDF
    International audienceBACKGROUND:Studies of patients with paraneoplastic neurologic disorders (PND) have revealed that apoptotic tumor serves as a potential potent trigger for the initiation of naturally occurring tumor immunity. The purpose of this study was to assess the feasibility, safety, and immunogenicity of an apoptotic tumor-autologous dendritic cell (DC) vaccine.METHODS AND FINDINGS:We have modeled PND tumor immunity in a clinical trial in which apoptotic allogeneic prostate tumor cells were used to generate an apoptotic tumor-autologous dendritic cell vaccine. Twenty-four prostate cancer patients were immunized in a Phase I, randomized, single-blind, placebo-controlled study to assess the safety and immunogenicity of this vaccine. Vaccinations were safe and well tolerated. Importantly, we also found that the vaccine was immunogenic, inducing delayed type hypersensitivity (DTH) responses and CD4+ and CD8+ T cell proliferation, with no effect on FoxP3+ regulatory T cells. A statistically significant increase in T cell proliferation responses to prostate tumor cells in vitro (p = 0.002), decrease in prostate specific antigen (PSA) slope (p = 0.016), and a two-fold increase in PSA doubling time (p = 0.003) were identified when we compared data before and after vaccination.CONCLUSIONS:An apoptotic cancer cell vaccine modeled on naturally occurring tumor immune responses in PND patients provides a safe and immunogenic tumor vaccine
    corecore