89 research outputs found
Energy and electromagnetism of a differential form
Let X be a smooth manifold of dimension 1+n endowed with a lorentzian metric
g, and let T be the electromagnetic energy tensor associated to a 2-form F. In
this paper we characterize this tensor T as the only 2-covariant natural tensor
associated to a lorentzian metric and a 2-form that is independent of the unit
of scale and satisfies certain condition on its divergence. This
characterization is motivated on physical grounds, and can be used to justify
the Einstein-Maxwell field equations. More generally, we characterize in a
similar manner the energy tensor associated to a differential form of arbitrary
order k. Finally, we develop a generalized theory of electromagnetism where
charged particles are not punctual, but of an arbitrary fixed dimension p. In
this theory, the electromagnetic field F is a differential form of order 2+p
and its electromagnetic energy tensor is precisely the energy tensor associated
to F.Comment: 28 pages. Referee's suggestions added. To appear in Journal of
Mathematical Physic
Symptom-severity-related brain connectivity alterations in functional movement disorders
Background Functional movement disorders, a common cause of neurological disabilities, can occur with heterogeneous motor manifestations including functional weakness. However, the underlying mechanisms related to brain function and connectivity are unknown. Objective To identify brain connectivity alterations related to functional weakness we assessed network centrality changes in a group of patients with heterogeneous motor manifestations using task-free functional MRI in combination with different network centrality approaches. Methods Task-free functional MRI was performed in 48 patients with heterogeneous motor manifestations including 28 patients showing functional weakness and 65 age- and sex-matched healthy controls. Functional connectivity differences were assessed using different network centrality approaches, i.e. global correlation, eigenvector centrality, and intrinsic connectivity. Motor symptom severity was assessed using The Simplified Functional Movement Disorders Rating Scale and correlated with network centrality. Results Comparing patients with and without functional weakness showed significant network centrality differences in the left temporoparietal junction and precuneus. Patients with functional weakness showed increased centrality in the same anatomical regions when comparing functional weakness with healthy controls. Moreover, in the same regions, patients with functional weakness showed a positive correlation between motor symptom severity and network centrality. This correlation was shown to be specific to functional weakness with an interaction analysis, confirming a significant difference between patients with and without functional weakness. Conclusions We identified the temporoparietal junction and precuneus as key regions involved in brain connectivity alterations related to functional weakness. We propose that both regions may be promising targets for phenotype-specific non-invasive brain stimulation
The TA Framework: Designing Real-time Teaching Augmentation for K-12 Classrooms
Recently, the HCI community has seen increased interest in the design of
teaching augmentation (TA): tools that extend and complement teachers'
pedagogical abilities during ongoing classroom activities. Examples of TA
systems are emerging across multiple disciplines, taking various forms: e.g.,
ambient displays, wearables, or learning analytics dashboards. However, these
diverse examples have not been analyzed together to derive more fundamental
insights into the design of teaching augmentation. Addressing this opportunity,
we broadly synthesize existing cases to propose the TA framework. Our framework
specifies a rich design space in five dimensions, to support the design and
analysis of teaching augmentation. We contextualize the framework using
existing designs cases, to surface underlying design trade-offs: for example,
balancing actionability of presented information with teachers' needs for
professional autonomy, or balancing unobtrusiveness with informativeness in the
design of TA systems. Applying the TA framework, we identify opportunities for
future research and design.Comment: to be published in Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 17 pages, 10 figure
Babesia spp. in ticks and wildlife in different habitat types of Slovakia
Background: Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized.
Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated.
Results: Babesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively.
Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia
capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum.Inst. de PatobiologíaFil: Hamsikova, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Kazimirová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Harustiakova, Danka. Masaryk University. Faculty of Medicine and Faculty of Science, Institute of Biostatistics and Analyses; República ChecaFil: Mahrikova, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Slovak, Mirko. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Berthova, Lenka. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Kocianova, Elena. Slovak Academy of Sciences. Biomedical Research Center. Institute of Virology; EslovaquiaFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
- …