465 research outputs found

    Rapidity Dependence of Strange Particle Ratios in Nuclear Collisions

    Get PDF
    It was recently found that in sulphur-induced nuclear collisions at 200 A GeV the observed strange hadron abundances can be explained within a thermodynamic model where baryons and mesons separately are in a state of relative chemical equilibrium, with overall strangeness being slightly undersaturated, but distributed among the strange hadron channels according to relative chemical equilibrium with a vanishing strange quark chemical potential. We develop a consistent thermodynamic formulation of the concept of relative chemical equilibrium and show how to introduce into the partition function deviations from absolute chemical equilibrium, e.~g.~an undersaturation of overall strangeness or the breaking of chemical equilibrium between mesons and baryons. We then proceed to test on the available data the hypothesis that the strange quark chemical potential vanishes everywhere, and that the rapidity distributions of all the observed hadrons can be explained in terms of one common, rapidity-dependent function μq(η)\mu_{\rm q}(\eta) for the baryon chemical potential only. The aim of this study is to shed light on the observed strong rapidity dependence of the strange baryon ratios in the NA36 experiment.Comment: uses REVTeX, 14 pages, 17 ps-figures (uuencoded) added with figures comman

    Chemical Equilibrium in Collisions of Small Systems

    Get PDF
    The system-size dependence of particle production in heavy-ion collisions at the top SPS energy is analyzed in terms of the statistical model. A systematic comparison is made of two suppression mechanisms that quantify strange particle yields in ultra-relativistic heavy-ion collisions: the canonical model with strangeness correlation radius determined from the data and the model formulated in the canonical ensemble using chemical off-equilibrium strangeness suppression factor. The system-size dependence of the correlation radius and the thermal parameters are obtained for p-p, C-C, Si-Si and Pb-Pb collisions at sqrt(s_NN) = 17.3 AGeV. It is shown that on the basis of a consistent set of data there is no clear difference between the two suppression patterns. In the present study the strangeness correlation radius was found to exhibit a rather weak dependence on the system size.Comment: 9 pages, 8 figures, submitted to Physical Review

    Centrality Dependence of Thermal Parameters Deduced from Hadron Multiplicities in Au + Au Collisions at sqrt{s_{NN}} = 130 GeV

    Full text link
    We analyse the centrality dependence of thermal parameters deduced from hadron m ultiplicities in Au + Au collisions at sNN=130GeV\sqrt{s_{NN}} = 130 GeV. While the chemical freeze-out temperature and chemical potentials are found to be roughly centrality-independent, the strangeness saturation factor γS\gamma_S increases with participant number towards unity, supporting the assumption of equilibrium freeze-out conditions in central collisions

    The effects of room design on computer-supported collaborative learning in a multi-touch classroom.

    Get PDF
    While research indicates that technology can be useful for supporting learning and collaboration, there is still relatively little uptake or widespread implementation of these technologies in classrooms. In this paper, we explore one aspect of the development of a multi-touch classroom, looking at two different designs of the classroom environment to explore how classroom layout may influence group interaction and learning. Three classes of students working in groups of four were taught in the traditional forward-facing room condition, while three classes worked in a centered room condition. Our results indicate that while the outcomes on tasks were similar across conditions, groups engaged in more talk (but not more off-task talk) in a centered room layout, than in a traditional forward-facing room. These results suggest that the use of technology in the classroom may be influenced by the location of the technology, both in terms of the learning outcomes and the interaction behaviors of students. The findings highlight the importance of considering the learning environment when designing technology to support learning, and ensuring that integration of technology into formal learning environments is done with attention to how the technology may disrupt, or contribute to, the classroom interaction practices

    Status of Chemical Equilibrium in Relativistic Heavy Ion Collisions

    Full text link
    Recent work on chemical equilibrium in heavy ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.Comment: 7 pages, 7 Postscript figure

    Towards strangeness saturation in central heavy-ion collisions at high energies

    Get PDF
    Analyses of the centrality binned identified hadron multiplicities at SPS and RHIC within the statistical-thermal model point to strangeness saturation with increasing centrality and energy.Comment: 4 pages, 2 figures. Presented at the 16th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Nantes, France, 18-24 July, 200

    Strangeness counting in high energy collisions

    Get PDF
    The estimates of overall strange quark production in high energy e+e-, pp and ppbar collisions by using the statistical-thermal model of hadronisation are presented and compared with previous works. The parametrization of strangeness suppression within the model is discussed. Interesting regularities emerge in the strange/non-strange produced quark ratio which turns out to be fairly constant in elementary collisions while it is twice as large in SPS heavy ion collision.Comment: talk given at Strangeness in Quark Matter 98, submitted to J. Phys.

    Gluon Radiation and Coherent States in Ultrarelativistic Nuclear Collisions

    Get PDF
    We explore the correspondence between classical gluon radiation and quantum radiation in a coherent state for gluons produced in ultrarelativistic nuclear collisions. The expectation value of the invariant momentum distribution of gluons in the coherent state is found to agree with the gluon number distribution obtained classically from the solution of the Yang-Mills equations. A criterion for the applicability of the coherent state formalism to the problem of radiation in ultrarelativistic nucleus-nucleus collisions is discussed. This criterion is found to be fulfilled for midrapidity gluons with perturbative transverse momenta larger than about 1-2 GeV and produced in collisions between valence partons.Comment: 15 pages, 6 figures, RevTeX (with epsf, psfig style files

    NCBI Peptidome: a new repository for mass spectrometry proteomics data

    Get PDF
    Peptidome is a public repository that archives and freely distributes tandem mass spectrometry peptide and protein identification data generated by the scientific community. Data from all stages of a mass spectrometry experiment are captured, including original mass spectra files, experimental metadata and conclusion-level results. The submission process is facilitated through acceptance of data in commonly used open formats, and all submissions undergo syntactic validation and curation in an effort to uphold data integrity and quality. Peptidome is not restricted to specific organisms, instruments or experiment types; data from any tandem mass spectrometry experiment from any species are accepted. In addition to data storage, web-based interfaces are available to help users query, browse and explore individual peptides, proteins or entire Samples and Studies. Results are integrated and linked with other NCBI resources to ensure dissemination of the information beyond the mass spectroscopy proteomics community. Peptidome is freely accessible at http://www.ncbi.nlm.nih.gov/peptidome

    Strange Messages: Chemical and Thermal Freeze-out in Nuclear Collisions

    Get PDF
    Thermal models are commonly used to interpret heavy-ion data on particle yields and spectra and to extract the conditions of chemical and thermal freeze-out in heavy-ion collisions. I discuss the usefulness and limitations of such thermal model analyses and review the experimental and theoretical evidence for thermalization in nuclear collisions. The crucial role of correlating strangeness production data with single particle spectra and two-particle correlation measurements is pointed out. A consistent dynamical picture for the heavy-ion data from the CERN SPS involves an initial prehadronic stage with deconfined color and with an appreciable isotropic pressure component. This requires an early onset of thermalization.Comment: 15 pages, 2 figures, talk given at Strange Quark Matter '98, Padova, Italy, 20-24 July 1998, to be published in J. Phys. G 25; final version with updated reference
    corecore