9 research outputs found

    Certified high-efficiency "large-area" perovskite solar cells module for Fresnel lens-based concentrated photovoltaic

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Cell Press via the DOI in this recordData availability: All data generated or analysed during this study are included in the Supplementary Information article and its data source. Source data are provided in this paper. All data reported in this paper will be shared by the lead contact upon request.The future of energy generation is well in tune with the critical needs of the global economy, leading to more green innovations and emissions-abatement technologies. Introducing concentrated photovoltaic (CPV) is one of the most promising technologies owing to its high photo-conversion efficiency (PCE). While most researchers use silicon and cadmium telluride for CPV, we investigate the potential in nascent technologies, such as perovskite solar cell (PSC). This work constitutes a preliminary investigation into a ‘large-area’ PSC module under a Fresnel lens (FL) with a ‘refractive optical concentrator-silicon-on-glass’ base to minimise the PV performance and scalability trade-off concerning the PSCs. The FL-PSC system measured the solar current-voltage characteristics in variable lens-to-cell distances and illuminations. A systematic study of the PSC module temperature was monitored using the COMSOL transient heat transfer mechanism. The FL-based technique for ‘large-area’ PSC architecture is an unfolded technology that further facilitates the potential for commercialisation.Engineering and Physical Sciences Research Council (EPSRC)Valais Energy Demonstrators FundEuropean Union Horizon 2020Deputyship for Research & Innovation, Ministry of Education, Saudi Arabi

    Certified high-efficiency "large-area" perovskite solar cells module for Fresnel lens-based concentrated photovoltaic

    Get PDF
    The future of energy generation is well in tune with the critical needs of the global economy, leading to more green innovations and emissions-abatement technologies. Introducing concentrated photovoltaic (CPV) is one of the most promising technologies owing to its high photo-conversion efficiency (PCE). While most researchers use silicon and cadmium telluride for CPV, we investigate the potential in nascent technologies, such as perovskite solar cell (PSC). This work constitutes a preliminary investigation into a ‘large-area’ PSC module under a Fresnel lens (FL) with a ‘refractive optical concentrator-silicon-on-glass’ base to minimise the PV performance and scalability trade-off concerning the PSCs. The FL-PSC system measured the solar current-voltage characteristics in variable lens-to-cell distances and illuminations. A systematic study of the PSC module temperature was monitored using the COMSOL transient heat transfer mechanism. The FL-based technique for ‘large-area’ PSC architecture is an unfolded technology that further facilitates the potential for commercialisation
    corecore