12 research outputs found

    Thermally assisted magnetization reversal in the presence of a spin-transfer torque

    Full text link
    We propose a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation for the magnetization dynamics in the presence of spin transfer torques. Since the spin transfer torque can pump a magnetic energy into the magnetic system, the equilibrium temperature of the magnetic system is ill-defined. We introduce an effective temperature based on a stationary solution of the Fokker-Planck equation. In the limit of high energy barriers, the law of thermal agitation is derived. We find that the N\'{e}el-Brown relaxation formula remains valid as long as we replace the temperature by an effective one that is linearly dependent of the spin torque. We carry out the numerical integration of the stochastic Landau-Lifshitz equation to support our theory. Our results agree with existing experimental data.Comment: 5 figure

    Magnetization dynamics with a spin-transfer torque

    Full text link
    The magnetization reversal and dynamics of a spin valve pillar, whose lateral size is 64×\times64 nm2^2, are studied by using micromagnetic simulation in the presence of spin transfer torque. Spin torques display both characteristics of magnetic damping (or anti-damping) and of an effective magnetic field. For a steady-state current, both M-I and M-H hysteresis loops show unique features, including multiple jumps, unusual plateaus and precessional states. These states originate from the competition between the energy dissipation due to Gilbert damping and the energy accumulation due to the spin torque supplied by the spin current. The magnetic energy oscillates as a function of time even for a steady-state current. For a pulsed current, the minimum width and amplitude of the spin torque for achieving current-driven magnetization reversal are quantitatively determined. The spin torque also shows very interesting thermal activation that is fundamentally different from an ordinary damping effect.Comment: 15 figure

    Edge states of graphene bilayer strip

    Full text link
    The electronic structure of the zig-zag bilayer strip is analyzed. The electronic spectra of the bilayer strip is computed. The dependence of the edge state band flatness on the bilayer width is found. The density of states at the Fermi level is analytically computed. It is shown that it has the singularity which depends on the width of the bilayer strip. There is also asymmetry in the density of states below and above the Fermi energy.Comment: 9 page

    Parametric quantum spin pump

    Get PDF
    We investigate a non-adiabatic parametric quantum pump consists of a nonmagnetic scattering region connected by two ferromagnetic leads. The presence of ferromagnetic leads allows electrons with different spins to experience different potential landscape. Using this effect we propose a quantum spin pump that drives spin-up electrons to flow in one direction and spin-down electrons to flow in opposite direction. As a result, the spin pump can deliver a spin current with vanishing charge current
    corecore