826 research outputs found

    Characterization of a new pathway that activates lumisterol <i>in vivo</i> to biologically active hydroxylumisterols

    Get PDF
    Abstract Using LC/qTOF-MS we detected lumisterol, 20-hydroxylumisterol, 22-hydroxylumisterol, 24-hydroxylumisterol, 20,22-dihydroxylumisterol, pregnalumisterol, 17-hydroxypregnalumisterol and 17,20-dihydroxypregnalumisterol in human serum and epidermis, and the porcine adrenal gland. The hydroxylumisterols inhibited proliferation of human skin cells in a cell type-dependent fashion with predominant effects on epidermal keratinocytes. They also inhibited melanoma proliferation in both monolayer and soft agar. 20-Hydroxylumisterol stimulated the expression of several genes, including those associated with keratinocyte differentiation and antioxidative responses, while inhibiting the expression of others including RORA and RORC. Molecular modeling and studies on VDRE-transcriptional activity excludes action through the genomic site of the VDR. However, their favorable interactions with the A-pocket in conjunction with VDR translocation studies suggest they may act on this non-genomic VDR site. Inhibition of RORα and RORγ transactivation activities in a Tet-on CHO cell reporter system, RORα co-activator assays and inhibition of (RORE)-LUC reporter activity in skin cells, in conjunction with molecular modeling, identified RORα and RORγ as excellent receptor candidates for the hydroxylumisterols. Thus, we have discovered a new biologically relevant, lumisterogenic pathway, the metabolites of which display biological activity. This opens a new area of endocrine research on the effects of the hydroxylumisterols on different pathways in different cells and the mechanisms involved

    Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions

    Get PDF
    Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. Although melatonin is best known to regulate circadian rhythmicity and lower vertebrate skin pigmentation, the full spectrum of functional activities of this free radical-scavenging molecule, which also induces/promotes complex antioxidative and DNA repair systems, includes immunomodulatory, thermoregulatory, and antitumor properties. Because this plethora of functional melatonin properties still awaits to be fully appreciated by dermatologists, the current review synthesizes the main features that render melatonin a promising candidate for the management of several dermatoses associated with substantial oxidative damage. We also review why melatonin promises to be useful in skin cancer prevention, skin photo- and radioprotection, and as an inducer of repair mechanisms that facilitate the recovery of human skin from environmental damage. The fact that human skin and hair follicles not only express functional melatonin receptors but also engage in substantial, extrapineal melatonin synthesis further encourages one to systematically explore how the skin's melatonin system can be therapeutically targeted in future clinical dermatology and enrolled for preventive medicine strategies

    Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

    Get PDF
    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation

    Products of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity

    Get PDF
    BACKGROUND. Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)2D3, as well as 1-hydroxyvitamin D3 to 1a,20-dihydroxyvitamin D3 (1,20(OH)2D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL). METHODS AND FINDINGS. To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1a,25-dihydroxyvitamin D3 (1,25(OH)2D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)2D3 being either equipotent or slightly less potent than 1,25(OH)2D3, while 1,20(OH)2D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)2D3 was the most potent, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 µg/kg, whereas, 1,20(OH)2D3 was slightly to moderately calcemic and 1,25(OH)2D3 had strong calcemic activity. CONCLUSIONS. We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.National Institutes of Health (R01A052190

    20-Hydroxycholecalciferol, Product of Vitamin D3 Hydroxylation by P450scc, Decreases NF-κB Activity by Increasing IκBα Levels in Human Keratinocytes

    Get PDF
    The side chain of vitamin D3 is hydroxylated in a sequential manner by cytochrome P450scc (CYP11A1) to form 20-hydroxycholecalciferol, which can induce growth arrest and differentiation of both primary and immortalized epidermal keratinocytes. Since nuclear factor-κB (NF-κB) plays a pivotal role in the regulation of cell proliferation, differentiation and apoptosis, we examined the capability of 20-hydroxycholecalciferol to modulate the activity of NF-κB, using 1,25-dihydroxycholecalciferol (calcitriol) as a positive control. 20-hydroxycholecalciferol inhibits the activation of NFκB DNA binding activity as well as NF-κB-driven reporter gene activity in keratinocytes. Also, 20-hydroxycholecalciferol induced significant increases in the mRNA and protein levels of the NF-κB inhibitor protein, IκBα, in a time dependent manner, while no changes in total NF-κB-p65 mRNA or protein levels were observed. Another measure of NF-κB activity, p65 translocation from the cytoplasm into the nucleus was also inhibited in extracts of 20-hydroxycholecalciferol treated keratinocytes. Increased IκBα was concomitantly observed in cytosolic extracts of 20-hydroxycholecalciferol treated keratinocytes, as determined by immunoblotting and immunofluorescent staining. In keratinocytes lacking vitamin D receptor (VDR), 20-hydroxycholecalciferol did not affect IκBα mRNA levels, indicating that it requires VDR for its action on NF-κB activity. Comparison of the effects of calcitrol, hormonally active form of vitamin D3, with 20-hydrocholecalciferol show that both agents have a similar potency in inhibiting NF-κB. Since NF-κB is a major transcription factor for the induction of inflammatory mediators, our findings indicate that 20-hydroxycholecalciferol may be an effective therapeutic agent for inflammatory and hyperproliferative skin diseases

    CKS1 expression in melanocytic nevi and melanoma

    Get PDF
    Cyclin-dependent kinase subunit 1 (Cks1) regulates the degradation of p27, an important G1-S inhibitor, which is up regulated by MAPK pathway activation. In this study, we sought to determine whether Cks1 expression is increased in melanocytic tumors and correlates with outcome and/or other clinicopathologic prognostic markers. Cks1 expression was assessed by immunohistochemistry in 298 melanocytic lesions. The frequency and intensity of cytoplasmic and nuclear expression was scored as a labeling index and correlated with clinico-pathological data. Nuclear Cks1 protein was found in 63% of melanocytic nevi, 89% primary and 90% metastatic melanomas with mean labeling index of 7 ± 16, 19 ± 20, and 30 ± 29, respectively. While cytoplasmic Cks1 was found in 41% of melanocytic nevi, 84% primary and 95% metastatic melanomas with mean labeling index of 18 ± 34, 35 ± 34, and 52 ± 34, accordingly. Histologic stepwise model of tumor progression, defined as progression from benign nevi to primary melanomas, to melanoma metastases, revealed a significant increase in nuclear and cytoplasmic Cks1 expression with tumor progression. Nuclear and cytoplasmic Cks1 expression correlated with the presence of ulceration, increased mitotic rate, Breslow depth, Clark level, tumor infiltrating lymphocytes and gender. However, other well-known prognostic factors (age, anatomic site, and regression) did not correlate with any type of Cks1 expression. Similarly, increasing nuclear expression of Cks1 significantly correlated with worse overall survival. Thus, Cks1 expression appears to play a role in the progression of melanoma, where high levels of expression are associated with poor outcome. Cytoplasmic expression of Cks1 might represent high turnover of protein via the ubiquination/proteosome pathway. © Brozyna et al

    Melatonin and its metabolites ameliorate UVR-induced mitochondrial oxidative stress in human MNT-1 melanoma cells

    Get PDF
    Melatonin (Mel) is the major biologically active molecule secreted by the pineal gland. Mel and its metabolites, 6-hydroxymelatonin (6(OH)Mel) and 5-methoxytryptamine (5-MT), possess a variety of functions, including the scavenging of free radicals and the induction of protective or reparative mechanisms in the cell. Their amphiphilic character allows them to cross cellular membranes and reach subcellular organelles, including the mitochondria. Herein, the action of Mel, 6(OH)Mel, and 5-MT in human MNT-1 melanoma cells against ultraviolet B (UVB) radiation was investigated. The dose of 50 mJ/cm2 caused a significant reduction of cell viability up to 48%, while investigated compounds counteracted this deleterious effect. UVB exposure increased catalase activity and led to a simultaneous Ca++ influx (16%), while tested compounds prevented these disturbances. Additional analysis focused on mitochondrial respiration performed in isolated mitochondria from the liver of BALB/cJ mice where Mel, 6(OH)Mel, and 5-MT significantly enhanced the oxidative phosphorylation at the dose of 10&#8722;6 M with lower effects seen at 10&#8722;9 or 10&#8722;4 M. In conclusion, Mel, 6(OH)Mel and 5-MT protect MNT-1 cells, which express melatonin receptors (MT1 and MT2) against UVB-induced oxidative stress and mitochondrial dysfunction, including the uncoupling of oxidative phosphorylation

    A Novel Role of Peripheral Corticotropin-Releasing Hormone (CRH) on Dermal Fibroblasts

    Get PDF
    Corticotropin-releasing hormone, or factor, (CRH or CRF) exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh−/−) had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+) cells. Human primary cultures of foreskin fibroblasts exposed to the CRF1 antagonist antalarmin recapitulated the findings in the Crh−/− cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis

    Acute and Long-Term Effects of Hyperthermia in B16-F10 Melanoma Cells

    Get PDF
    OBJECTIVE: Hyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10. MATERIALS AND METHODS: Melanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction. RESULTS: Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G(2)/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells. CONCLUSION: The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure

    Protective Effects of Novel Derivatives of Vitamin D\u3csub\u3e3\u3c/sub\u3e and Lumisterol Against UVB-Induced Damage in Human Keratinocytes Involve Activation of Nrf2 and p53 Defense Mechanisms

    Get PDF
    We tested whether novel CYP11A1-derived vitamin D3- and lumisterol-hydroxyderivatives, including 1,25(OH)2D3, 20(OH)D3, 1,20(OH)2D3, 20,23(OH)2D3, 1,20,23(OH)3D3, lumisterol, 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, and 24(OH)L3, can protect against UVB-induced damage in human epidermal keratinocytes. Cells were treated with above compounds for 24 h, then subjected to UVB irradiation at UVB doses of 25, 50, 75, or 200 mJ/cm2, and then examined for oxidant formation, proliferation, DNA damage, and the expression of genes at the mRNA and protein levels. Oxidant formation and proliferation were determined by the DCFA-DA and MTS assays, respectively. DNA damage was assessed using the comet assay. Expression of antioxidative genes was evaluated by real-time RT-PCR analysis. Nuclear expression of CPD, phospho-p53, and Nrf2 as well as its target proteins including HO-1, CAT, and MnSOD, were assayed by immunofluorescence and western blotting. Treatment of cells with the above compounds at concentrations of 1 or 100 nM showed a dose-dependent reduction in oxidant formation. At 100 nM they inhibited the proliferation of cultured keratinocytes. When keratinocytes were irradiated with 50–200 mJ/cm2 of UVB they also protected against DNA damage, and/or induced DNA repair by enhancing the repair of 6-4PP and attenuating CPD levels and the tail moment of comets. Treatment with test compounds increased expression of Nrf2-target genes involved in the antioxidant response including GR, HO-1, CAT, SOD1, and SOD2, with increased protein expression for HO-1, CAT, and MnSOD. The treatment also stimulated the phosphorylation of p53 at Ser-15, increased its concentration in the nucleus and enhanced Nrf2 translocation into the nucleus. In conclusion, pretreatment of keratinocytes with 1,25(OH)2D3 or CYP11A1-derived vitamin D3- or lumisterol hydroxy-derivatives, protected them against UVB-induced damage via activation of the Nrf2-dependent antioxidant response and p53-phosphorylation, as well as by the induction of the DNA repair system. Thus, the new vitamin D3 and lumisterol hydroxy-derivatives represent promising anti-photodamaging agents
    • …
    corecore