14 research outputs found

    Microanalyseur ionique

    No full text
    Here we describe a method of local analysis based on the emission of characteristic ions ejected from a solid sample bombarded by an ion beam of a few keV. It is possible either to get a distribution image of one micron resolution or to perform an analysis in depth with a resolution of 100 Å by a gradual sputtering of the sample. All the elements can be analysed.La mĂ©thode d'analyse locale dĂ©crite ci-dessous repose sur le phĂ©nomĂšne d'Ă©mission d'ions caractĂ©ristiques arrachĂ©s Ă  une cible solide par le bombardement d'un faisceau de particules de quelques kiloĂ©lectron-volts d'Ă©nergie. On peut soit obtenir directement des images de distribution avec une rĂ©solution d'un micron, soit, en pulvĂ©risant graduellement l'objet, l'analyser tranche par tranche avec une rĂ©solution en profondeur de l'ordre de 100 Å. Tous les Ă©lĂ©ments peuvent ĂȘtre analysĂ©s

    From direct ion images to ion probe scanning

    No full text
    Direct imaging with secondary ions versus scanning with an ion probe have been considered from the transmission and lateral resolution standpoints. Ions emitted from an object point are focused by an immersion lens into an aberration spot. The illumination in the spot (spread function) has been computed, taking into account the energy distribution of secondary ions and the upper limit Ίom the lateral initial energy fixed by a material stop in the plane of the crossover. Transmission and spatial resolving limit have been evaluated versus Ί om for a given energy bandwidth. The results are compared to those obtained with an ion probe when the objective lens is working simply as a collecting system. The gains in transmission are evaluated in relation with limitations introduced by the spectrometer according to the mass resolving power being used.L'opposition entre "image ionique directe" et "image par balayage avec une sonde" a été reconsidérée du point de vue de la transmission et de la résolution spatiale. Pour cela, l'éclairement dans la tache d'aberration donnée par l'objectif à immersion d'un objet ponctuel (répon se percusionnelle) a été calculé en tenant compte de la distribution énergétique des ions secondaires et de la valeur maximale Ίom de l'énergie latérale fixée par un diaphragme placé au niveau de la pupille. La transmission de l'objectif et sa limite spatiale de résolution ont été évaluées en fonction de Ίom et pour une bande d'énergie donnée. Les résultats sont comparés à ceux obtenus avec une sonde lorsque l'objectif est utilisé simplement comme un sytÚme de collecte des ions. Les gains de transmission ont été évalués en tenant compte des limites imposées à l'étendue du faisceau par le pouvoir séparateur en masse du spectromÚtre

    Achieving high mass resolution with the NanoSIMS 50 while preserving signal transmission from submicron probe impact areas

    No full text
    International audienceElemental and isotopic local analysis using secondary ion emission induced by the impact of a submicron ion probe (SIMS) requires: (i) efficient collection of ejected ions (sensitivity) (ii) high mass resolving power (MRP) to discard interfering species (selectivity). Matching the extracted secondary beam with the acceptance of the spectrometer is then an essential issue. The NanoSIMS 50 fits those requirements fairly well. Nonetheless, a thoughtful study of its mass spectrometer has led to higher performance and suggested further improvements. 12C2D and 12C2H2 with similar peak amplitudes were separated, MRP ≅ 16 800, while preserving half of the maximum signal. MRP of about 9 000, with flat top peaks and a few percent valley between 16OD and 17OH, were obtained while maintaining about 2/3 of maximum signals. Such complete separation should allow D/H ratio measurements via 16OD/16OH with much better sensitivity than that obtained with monoatomic species

    Utilisation du microanalyseur ionique en géochimie. Application à la météorite de Juvinas

    No full text
    The ion microanalyzer has been used to obtain images of the distribution of elements on a polished section of the Juvinas achondritic meteorite. This specimen which is mainly composed of silicates has been chosen to study a few characteristics of secondary ion emission in geological materials. In the article is presented a critical examination of some problems inherent to this method when used to obtain quantitative measurements. Discussed are the risks of interferences during the determination of trace-elements, the dectection limit, the mass resolving power and the spatial resolution. The use of this analytical technique in investigating the Juvinas eucrite permits to ascertain previous observations made with the optical microscope, in particular on the nature of micron-size inclusions in the minerals pyroxene and plagioclase. A titanium rich mineral — probably rutile — has been found in some pyroxene crystals. This would be the first occurence of a titanium oxide in this type of meteorite. Thus, a few applications are given of the use of the ion micro-analyzer in the fields of mineralogy and geochemistry.On a utilisĂ© le microanalyseur ionique pour obtenir des images de distribution d'Ă©lĂ©ments sur une section polie de la mĂ©tĂ©orite achondritique de Juvinas. Cet Ă©chantillon composĂ© principalement de silicates a Ă©tĂ© choisi afin d'Ă©tudier quelques caractĂ©ristiques de l'Ă©mission ionique secondaire dans les matĂ©riaux gĂ©ologiques. On prĂ©sente un examen critique de certains problĂšmes soulevĂ©s par l'analyse quantitative au moyen de ce type de source, en particulier les risques d'interfĂ©rences lors du dosage d'Ă©lĂ©ments en traces, et l'on discute la limite de dĂ©tection, le pouvoir sĂ©parateur en masse et la rĂ©solution spatiale. L'application de cette technique d'analyse Ă  l'eucrite de Juvinas permet de prĂ©ciser des observations antĂ©rieures effectuĂ©es au microscope optique, notamment sur la nature d'inclusions de l'ordre du micron dans les minĂ©raux pyroxĂšne et plagioclase. Un minĂ©ral riche en titane — probablement du rutile — a Ă©tĂ© trouvĂ© dans certains cristaux de pyroxĂšne. Ce serait la premiĂšre fois qu'un oxyde de titane est observĂ© dans ce type de mĂ©tĂ©orite. On illustre ainsi quelques possibilitĂ©s du microanalyseur ionique pour les Ă©tudes de minĂ©ralogie et de gĂ©ochimie.JĂ©rĂŽme Dominique Yves, Slodzian Georges. Utilisation du microanalyseur ionique en gĂ©ochimie. Application Ă  la mĂ©tĂ©orite de Juvinas. In: Bulletin de la SociĂ©tĂ© française de MinĂ©ralogie et de Cristallographie, volume 94, 5-6, 1971. pp. 538-548

    Préface

    No full text

    Dynamic transfer applied to secondary ion imaging over large scanned fields with the nanoSIMS 50 at high mass resolution

    No full text
    International audienceDynamic transfer is an adaptive optical approach used for coupling a scanning ion probe with the mass spectrometer designed for analyzing sputtered ions emanating from the probe impact. Its tuning is of crucial importance for getting uniform signal collection over large scanning fields and therefore scanning images free of vignetting in a context of high mass resolution. Revisiting the optical design of the NanoSIMS 50 instrument, where the same set of lenses focuses the primary ion probe on the sample and collects secondary ions from the sample, led us to develop novel experimental procedures to achieve dynamic transfer tuning and overcome instrumental imperfections. It is the case for scanning distortion that may be induced by the octopole used for correcting probe astigmatism and may cause irreducible vignetting on scanning images. We show that it is possible to develop complete tuning procedures by compromising temporarily on the sharpness of the probe focus. Most importantly, we show that, in a context of high mass resolution, the transfer does not significantly disturb isotopic ratios over large scanned fields provided external coils are properly adjusted to compensate ambient magnetic fields.Deepening the procedures led us to demonstrate that the scanning center of the probe may not coincide with the imaging center of COOL, Coaxial Objective Lenses forming the probe and extracting secondary ions. We have checked that bringing those two centers into coincidence resulted in a better image quality over large fields.In the present work, we show how to handle the secondary beam in order to position it before it enters the spectrometer. That capability is essential for optimizing transmission at high mass resolution by aligning the secondary beam axis on a given entrance axis of the spectrometer.These results led us to propose several instrumental improvements including the crucial interest of an additional octopole upstream in the primary ion probe column to prevent scanning distortion when performing astigmatism correction and the possibility of offsetting primary beam deviating plates to bring scanning and imaging centers in coincidence
    corecore