1,253 research outputs found
Adult Female Spruce Bedworm, \u3ci\u3eChoristoneura Fumiferana\u3c/i\u3e (Lepidoptera: Tortricidae), Dry Weight in Relationship to Pupal Fresh Weight and Case Diameter
(excerpt)
The weights of adult insects are often measured in production and population studies in order to estimate such variables as growth rates, food conversion efficiencies, fecundity, and others. For the eastern spruce budworm, Choristoneura fumiferana (Clemens), both pupal fresh weights and pupal case diameters have been measured as indicators of adult fecundity and adult dry weights (Miller 1957). However, there are no reports explicitly showing the relationship between these metric pupal variables and adult dry weights. This is the goal of this note
Accounting history: A survey of academic interest in the U.S.
A number of the reports by academicians and practitioners in the United States have called for significant change in accounting education and an enhanced role for accounting history in curricula and research. However, the survey results reported in this paper suggest that achieving wider acceptance of accounting history presents some perplexing problems. Doctoral faculty, especially assistant professors, report less interest in accounting history than non-doctoral faculty. Although a majority of academicians consider accounting history research to be acceptable for promotion, tenure and hiring decisions and a valuable aid to teaching, practitioners, students, doctoral faculty strongly believe that it is of less value than mainstream empirical research in accounting. Most academicians perceive that research in accounting history is not as methodologically rigorous as other branches of accounting research
Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles
The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation
Enhancing the Performance of the T-Peel Test for Thin and Flexible Adhered Laminates
Symmetrically bonded thin and flexible T-peel specimens, when tested on
vertical travel machines, can be subject to significant gravitational loading;
with the associated asymmetry and mixed-mode failure during peeling. This can
cause erroneously high experimental peel forces to be recorded which leads to
uncertainty in estimating interfacial fracture toughness and failure mode. To
overcome these issues, a mechanical test fixture has been designed for use with
vertical test machines, that supports the unpeeled portion of the test specimen
and suppresses parasitic loads due to gravity from affecting the peel test. The
mechanism, driven by the test machine cross-head, moves at one-half of the
velocity of the cross-head such that the unpeeled portion always lies in the
plane of the instantaneous center of motion. Several specimens such as bonded
polymeric films, laminates, and commercial tapes were tested with and without
the fixture, and the importance of the proposed T-peel procedure has been
demonstrated
A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives
Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines
Quasi-infra-red fixed points and renormalisation group invariant trajectories for non-holomorphic soft supersymmetry breaking
In the MSSM the quasi-infra-red fixed point for the top-quark Yukawa coupling
gives rise to specific predictions for the soft-breaking parameters. We discuss
the extent to which these predictions are modified by the introduction of
additional ``non-holomorphic'' soft-breaking terms. We also show that in a
specific class of theories there exists an RG-invariant trajectory for the
``non-holomorphic'' terms, which can be understood using a holomorphic spurion
term.Comment: 24 pages, TeX, two figures. Uses Harvmac (big) and epsf. Minor errors
corrected, and the RG trajectory explained in terms of a holomorphic spurion
ter
Relationship between Tibial conformation, cage size and advancement achieved in TTA procedure
Previous studies have suggested that there is a theoretical discrepancy between the cage size and the resultant tibial tuberosity advancement, with the cage size consistently providing less tibial tuberosity advancement than predicted. The purpose of this study was to test and quantify this in clinical cases. The hypothesis was that the advancement of the tibial tuberosity as measured by the widening of the proximal tibia at the tibial tuberosity level after a standard TTA, will be less than the cage sized used, with no particular cage size providing a relative smaller or higher under-advancement, and that the conformation of the proximal tibia will have an influence on the amount of advancement achieved
Binocular determination of astigmatic power and axis
The purpose of this study is to determine if any measurable difference exists in the astigmatic correction when this correction is determined under binocular testing conditions as opposed to the more traditional approach of testing monocularly and also, to determine if this difference, if any, is statistically significant
Funneling Light Through a Subwavelength Aperture with Epsilon-Near-Zero Materials
Integration of the next generation of photonic structures with electronic and
optical on-chip components requires the development of effective methods for
confining and controlling light in subwavelength volumes. Several techniques
enabling light coupling to sub-wavelength objects have recently been proposed,
including grating-, and composite-based solutions. However, experi-mental
realization of these couplers involves complex fabrication with \sim 10nm
resolution in three dimensions. One promising alternative to complex coupling
structures involves materials with vanishingly small dielectric permittivity,
also known as epsilon-near-zero (ENZ) materials. In contrast to the previously
referenced approaches, a single at layer of ENZ-material is expected to provide
effcient coupling between free-space radiation and sub-wavelength guiding
structures. Here we report the first direct observation of bulk-ENZ-enhanced
transmission through a subwavelength slit, accompanied by a theoretical study
of this phenomenon. Our study opens the door to multiple practical applications
of ENZ materials and ENZ-based photonic systems
- …