6,987 research outputs found
Advanced optimal extraction for the Spitzer/IRS
We present new advances in the spectral extraction of point-like sources
adapted to the Infrared Spectrograph onboard the Spitzer Space Telescope. For
the first time, we created a super-sampled point spread function of the
low-resolution modules. We describe how to use the point spread function to
perform optimal extraction of a single source and of multiple sources within
the slit. We also examine the case of the optimal extraction of one or several
sources with a complex background. The new algorithms are gathered in a plugin
called Adopt which is part of the SMART data analysis software.Comment: Accepted for publication in PAS
Recent passive density sensor effort at the Naval Ordnance Laboratory
Development of falling sphere for atmospheric density measurements onboard ship
Force and energy dissipation variations in non-contact atomic force spectroscopy on composite carbon nanotube systems
UHV dynamic force and energy dissipation spectroscopy in non-contact atomic
force microscopy were used to probe specific interactions with composite
systems formed by encapsulating inorganic compounds inside single-walled carbon
nanotubes. It is found that forces due to nano-scale van der Waals interaction
can be made to decrease by combining an Ag core and a carbon nanotube shell in
the Ag@SWNT system. This specific behaviour was attributed to a significantly
different effective dielectric function compared to the individual
constituents, evaluated using a simple core-shell optical model. Energy
dissipation measurements showed that by filling dissipation increases,
explained here by softening of C-C bonds resulting in a more deformable
nanotube cage. Thus, filled and unfilled nanotubes can be discriminated based
on force and dissipation measurements. These findings have two different
implications for potential applications: tuning the effective optical
properties and tuning the interaction force for molecular absorption by
appropriately choosing the filling with respect to the nanotube.Comment: 22 pages, 6 figure
Scaling and Further Tests of Heavy Meson Decay Constant Determinations from Nonrelativistic QCD
We present results for the B_s meson decay constant f_{B_s} from simulations
at three lattice spacings in the range a^{-1}=1.1 to 2.6 GeV using NRQCD heavy
quarks and clover light quarks in the quenched approximation. We study scaling
of this quantity and check the consistency between mesons decaying from rest
and from a state with nonzero spatial momentum. The cancellation of power law
contributions that arise in the NRQCD formulation of heavy-light currents is
discussed. On the coarsest lattice the D_s meson decay constant f_{D_s} is
calculated. Our best values for the decay constants are given by f_{B_s} =
187(4)(4)(11)(2)(7)(6) MeV and f_{D_s} = 223(6)(31)(38)(23)(9)(^{+3}_{-1}) MeV.Comment: 29 pages with 7 postscript figures, improved error analysis, version
to appear in Physical Review
New results on heavy hadron spectroscopy with NRQCD
We present results for the spectrum of b-bbar bound states in the quenched
approximation for three different values of the lattice spacing. Results for
spin-independent splittings are shown to have good scaling behaviour;
spin-dependent splittings are more sensitive to discretisation effects. We
discuss what needs to be done to match the experimental spectrum.Comment: 3 pages, contribution to Lattice'9
A Noisy Monte Carlo Algorithm
We propose a Monte Carlo algorithm to promote Kennedy and Kuti's linear
accept/reject algorithm which accommodates unbiased stochastic estimates of the
probability to an exact one. This is achieved by adopting the Metropolis
accept/reject steps for both the dynamical and noise configurations. We test it
on the five state model and obtain desirable results even for the case with
large noise. We also discuss its application to lattice QCD with stochastically
estimated fermion determinants.Comment: 10 pages, 1 tabl
- …