382 research outputs found

    Inferior Parietal Lobule Contributions to Visual Word Recognition

    Get PDF
    This study investigated how the left inferior parietal lobule (IPL) contributes to visual word recognition. We used repetitive TMS to temporarily disrupt neural information processing in two anatomical fields of the IPL, namely, the angular (ANG) and supramarginal (SMG) gyri, and observed the effects on reading tasks that focused attention on either the meaning or sounds of written words. Relative to no TMS, stimulation of the left ANG selectively slowed responses in the meaning, but not sound, task, whereas stimulation of the left SMG affected responses in the sound, but not meaning, task. These results demonstrate that ANG and SMG doubly dissociate in their contributions to visual word recognition. We suggest that this functional division of labor may be understood in terms of the distinct patterns of cortico-cortical connectivity resulting in separable functional circuits

    Stimulating Multiple-Demand Cortex Enhances Vocabulary Learning

    Get PDF
    It is well established that networks within multiple-demand cortex (MDC) become active when diverse skills and behaviors are being learnt. However, their causal role in learning remains to be established. In the present study, we first performed functional magnetic resonance imaging on healthy female and male human participants to confirm that MDC was most active in the initial stages of learning a novel vocabulary, consisting of pronounceable nonwords (pseudowords), each associated with a picture of a real object. We then examined, in healthy female and male human participants, whether repetitive transcranial magnetic stimulation of a frontal midline node of the cingulo-opercular MDC affected learning rates specifically during the initial stages of learning. We report that stimulation of this node, but not a control brain region, substantially improved both accuracy and response times during the earliest stage of learning pseudoword– object associations. This stimulation had no effect on the processing of established vocabulary, tested by the accuracy and response times when participants decided whether a real word was accurately paired with a picture of an object. These results provide evidence that noninvasive stimulation to MDC nodes can enhance learning rates, thereby demonstrating their causal role in the learning process. We propose that this causal role makes MDC candidate target for exper- imental therapeutics; for example, in stroke patients with aphasia attempting to reacquire a vocabulary

    Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis.

    Get PDF
    Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose

    Pentafluorophenyl platinum(II) complexes of PTA and its N-allyl and N-benzyl derivatives: Synthesis, characterization and biological activity

    Get PDF
    From the well-known 1,3,5-triaza-phosphaadamantane (PTA, 1a), the novel N-allyl and N-benzyl tetrafuoroborate salts 1-allyl-1-azonia-3,5-diaza-7-phosphaadamantane (APTA(BF4), 1b) and 1-benzyl-1-azonia-3,5-diaza-7-phosphaadamantane (BzPTA(BF4), 1c) were obtained. These phosphines were then allowed to react with (Pt(\u3bc-Cl)(C6F5)(tht))2 (tht = tetrahydrothiophene) affording the water soluble Pt(II) complexes trans-(PtCl(C6F5)(PTA)2) (2a) and its bis-cationic congeners trans-(PtCl(C6F5)(APTA)2)(BF4)2 (2b) and trans-(PtCl(C6F5)(BzPTA)2)(BF4)2 (2c). The compounds were fully characterized by multinuclear NMR, ESI-MS, elemental analysis and (for 2a) also by single crystal X-ray diffraction, which proved the trans configuration of the phosphine ligands. Furthermore, in order to evaluate the cytotoxic activities of all complexes the normal human dermal fibroblast (NHDF) cell culture were used. The antineoplastic activity of the investigated compounds was checked against the human lung carcinoma (A549), epithelioid cervix carcinoma (HeLa) and breast adenocarcinoma (MCF-7) cell cultures. Interactions between the complexes and human serum albumin (HSA) using fluorescence spectroscopy and circular dichroism spectroscopy (CD) were also investigated

    Distinct patterns of neural response to faces from different races in humans and deep networks

    Get PDF
    Social categories such as the race or ethnicity of an individual are typically conveyed by the visual appearance of the face. The aim of this study was to explore how these differences in facial appearance are represented in human and artificial neural networks. First, we compared the similarity of faces from different races using a neural network trained to discriminate identity. We found that the differences between races were most evident in the fully connected layers of the network. Although these layers were also able to predict behavioural judgements of face identity from human participants, performance was biased toward White faces. Next, we measured the neural response in face-selective regions of the human brain to faces from different races in Asian and White participants. We found distinct patterns of response to faces from different races in face-selective regions. We also found that the spatial pattern of response was more consistent across participants for own-race compared to other-race faces. Together, these findings show that faces from different races elicit different patterns of response in human and artificial neural networks. These differences may underlie the ability to make categorical judgements and explain the behavioural advantage for the recognition of own-race faces

    Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition

    Get PDF
    The angiogenesis inhibitor sunitinib is a tyrosine kinase inhibitor that acts mainly on the VEGF and PDGF pathways. We have previously shown that sunitinib is sequestered in the lysosomes of exposed tumor and endothelial cells. This phenomenon is part of the drug-induced resistance observed in the clinic. Here, we demonstrate that when exposed to light, sequestered sunitinib causes immediate destruction of the lysosomes, resulting in the release of sunitinib and cell death. We hypothesized that this photoactivation of sunitinib could be used as a vaso-occlusive vascular-targeting approach to treating cancer. Spectral properties of sunitinib and its lysosomal accumulation were measured in vitro. The human A2780 ovarian carcinoma transplanted onto the chicken chorioallantoic membrane (CAM) and the Colo-26 colorectal carcinoma model in Balb/c mice were used to test the effects of administrating sunitinib and subsequently exposing tumor tissue to light. Tumors were subsequently resected and subject to immunohistochemical analysis. In A2780 ovarian carcinoma tumors, treatment with sunitinib+light resulted in immediate specific angio-occlusion, leading to a necrotic tumor mass 24 h after treatment. Tumor growth was inhibited by 70% as compared with the control group (**P= 4; P = 0.0002). Histology revealed that photoactivation of sunitinib resulted in a change in tumor vessel architecture. The current results suggest that the spectral properties of sunitinib can be exploited for application against certain cancer indications

    Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers

    Get PDF
    Multidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes, undergo a dramatic compartmentalization in lysosomes because of their hydrophobic weak base nature. We hence developed a novel photoactivation-based pharmacological Trojan horse approach to target and eradicate MDR cancer cells based on photo-rupture of IA-loaded lysosomes and tumor cell lysis via formation of reactive oxygen species. Illumination of IA-loaded cells resulted in lysosomal photodestruction and restoration of parental cell drug sensitivity. Lysosomal photodestruction of MDR cells overexpressing the key MDR efflux transporters ABCG2, ABCB1 or ABCC1 resulted in 10- to 52-fold lower IC(50) values of various IAs, thereby restoring parental cell sensitivity. Finally, in vivo application of this photodynamic therapy strategy after i.v. injection of IAs in human ovarian tumor xenografts in the chorioallantoic membrane model revealed selective destruction of tumors and their associated vasculature. These findings identify lysosomal sequestration of IAs as an Achilles heel of MDR cells that can be harnessed to eradicate MDR tumor cells via lysosomal photodestruction
    corecore