6 research outputs found

    Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation

    Get PDF
    The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland–Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica

    Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record – SVALCLIME, a workshop report

    Get PDF
    ​​​​​​​We held the MagellanPlus workshop SVALCLIME “Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record”, from 18 to 21 October​​​​​​​ 2022 in Longyearbyen, to discuss scientific drilling of the unique high-resolution climate archives of Neoproterozoic to Paleogene age present in the sedimentary record of Svalbard. Svalbard is globally unique in that it facilitates scientific coring across multiple stratigraphic intervals within a relatively small area. The polar location of Svalbard for some of the Mesozoic and the entire Cenozoic makes sites in Svalbard highly complementary to the more easily accessible mid-latitude sites, allowing for investigation of the polar amplification effect over geological time. The workshop focused on how understanding the geological history of Svalbard can improve our ability to predict future environmental changes, especially at higher latitudes. This topic is highly relevant for the ICDP 2020–2030 Science Plan Theme 4 “Environmental Change” and Theme 1 “Geodynamic Processes”. We concluded that systematic coring of selected Paleozoic, Mesozoic, and Paleogene age sediments in the Arctic should provide important new constraints on deep-time climate change events and the evolution of Earth's hydrosphere–atmosphere–biosphere system. We developed a scientific plan to address three main objectives through scientific onshore drilling on Svalbard: a. Investigate the coevolution of life and repeated icehouse–greenhouse climate transitions, likely forced by orbital variations, by coring Neoproterozoic and Paleozoic glacial and interglacial intervals in the Cryogenian (“Snowball/Slushball Earth”) and late Carboniferous to early Permian time periods. b. Assess the impact of Mesozoic Large Igneous Province emplacement on rapid climate change and mass extinctions, including the end-Permian mass extinction, the end-Triassic mass extinction, the Jenkyns Event (Toarcian Oceanic Anoxic Event), the Jurassic Volgian Carbon Isotopic Excursion and the Cretaceous Weissert Event and Oceanic Anoxic Event 1a. c. Examine the early Eocene hothouse and subsequent transition to a coolhouse world in the Oligocene by coring Paleogene sediments, including records of the Paleocene–Eocene Thermal Maximum, the Eocene Thermal Maximum 2, and the Eocene–Oligocene transition. The SVALCLIME science team created plans for a 3-year drilling programme using two platforms: (1) a lightweight coring system for holes of ∼ 100 m length (4–6 sites) and (2) a larger platform that can drill deep holes of up to ∼ 2 km (1–2 sites). In situ wireline log data and fluid samples will be collected in the holes, and core description and sampling will take place at The University Centre in Svalbard (UNIS) in Longyearbyen. The results from the proposed scientific drilling will be integrated with existing industry and scientific boreholes to establish an almost continuous succession of geological environmental data spanning the Phanerozoic. The results will significantly advance our understanding of how the interplay of internal and external Earth processes are linked with global climate change dynamics, the evolution of life, and mass extinctions

    Bird or maniraptoran dinosaur? A femur from the Albian strata of Spitsbergen

    No full text

    Model data archive for a model-data intercomparison of the Eocene-Oligocene transition

    No full text
    This data package contains data used for an model-data intercomparison originally published in: D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. de Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, and Z. Zhang, 2021: The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, Climate of the Past, 17, 269-315. https://doi.org/10.5194/cp-17-269-2021 These data are also used in a further model-data intercomparison of Antarctic temperatures: Emily Tibbett, Natalie J Burls, David K. Hutchinson, Sarah J Feakins, (2023), Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, Paleoceanography and Paleocliamtology, In Review. Pre-print avaiable from: https://www.authorea.com/doi/full/10.1002/essoar.10511735.2 The package contains surface air temperature and sea surface temperature from an ensemble of model simulations of the Eocene-Oligocene transition. These data are provided at annual and monthly frequency. They are also provided on the original model grid, and an interpolated common grid used for the intercomparison. (The common grid is based on the HadCM3BL model grid.) All data are provided in NETCDF format with self-describing variable names. The name and explanation of the interpolated data files are contained in: table_of_experiments.xlsx Please read that spreadsheet to interpret the filenames, and see Table 2 (p291) of Hutchinson et al (2021) for experiment descriptions. Please also be mindful to cite the original authors of the simulations when using these data, whose work made this dataset possible. The appropriate citations are listed below: Reference DOI link Baatsen et al (2020) https://doi.org/10.5194/cp-16-2573-2020 Goldner et al (2014) https://doi.org/10.1038/nature13597 Ladant et al (2014a,b) https://doi.org/10.5194/cp-10-1957-2014 https://doi.org/10.1002/2013PA002593 Hutchinson et al (2018, 2019) https://doi.org/10.5194/cp-14-789-2018 https://doi.org/10.1038/s41467-019-11828-z Kennedy et al (2015) https://doi.org/10.1098/rsta.2014.0419 Zhang et al (2012, 2014) https://doi.org/10.5194/gmd-5-523-2012 https://doi.org/10.1038/nature13705 Sijp et al (2009) https://doi.org/10.1175/2009JCLI3003.
    corecore