729 research outputs found

    The VLA Low-frequency Sky Survey

    Full text link
    The Very Large Array (VLA) Low-frequency Sky Survey (VLSS) has imaged 95% of the 3*pi sr of sky north of declination = -30 degrees at a frequency of 74 MHz (4 meter wavelength). The resolution is 80" (FWHM) throughout, and the typical RMS noise level is ~0.1 Jy/beam. The typical point-source detection limit is 0.7 Jy/beam and so far nearly 70,000 sources have been catalogued. This survey used the 74 MHz system added to the VLA in 1998. It required new imaging algorithms to remove the large ionospheric distortions at this very low frequency throughout the entire ~11.9 degree field of view. This paper describes the observation and data reduction methods used for the VLSS and presents the survey images and source catalog. All of the calibrated images and the source catalog are available online (http://lwa.nrl.navy.mil/VLSS) for use by the astronomical community.Comment: 53 pages, including 3 tables and 15 figures. Has been accepted for publication in the Astronomical Journa

    The extraordinary radio galaxy MRC B1221-423: probing deeper at radio and optical wavelengths

    Get PDF
    We present optical spectra and high-resolution multi-wavelength radio observations of the compact steep-spectrum radio source MRC B1221-423 (z=0.1706). MRC B1221-423 is a very young (~10^5 yr), powerful radio source which is undergoing a tidal interaction with a companion galaxy. We find strong evidence of interaction between the AGN and its environment. The radio morphology is highly distorted, showing a dramatic interaction between the radio jet and the host galaxy, with the jet being turned almost back on itself. H I observations show strong absorption against the nucleus at an infall velocity of ~250 km/s compared to the stellar velocity, as well as a second, broader component which may represent gas falling into the nucleus. Optical spectra show that star formation is taking place across the whole system. Broad optical emission lines in the nucleus show evidence of outflow. Our observations confirm that MRC B1221-423 is a young radio source in a gas-rich nuclear environment, and that there was a time delay of a few x 100 Myr between the onset of star formation and the triggering of the AGN.Comment: 15 pages, 13 figures, to appear in MNRA

    The Coherent Radio Emission from the RS CVn Binary HR 1099

    Full text link
    We used the Australia Telescope in March-April 2005 to observe the RS CVn binary HR 1099 at 1.384 and 2.368 GHz at two epochs, each of 9 h in duration and 11 days apart. During two episodes of coherent emission, we employed a recently installed facility to sample the data at 78 ms intervals to measure the fine temporal and spectral structure of HR 1099. Our main observational results include: ~100% left hand circularly polarised emission was seen at both 1.384 and 2.368 GHz during both epochs; in the first event the emission feature drifted across the spectrum; three 22 min integrations made at 78 ms time resolution showed that the modulation index of the Stokes V parameter increased monotonically as the integration time was decreased and was still increasing at our resolution limit; we believe that the highly polarised emission is due to electron-cyclotron maser emission (ECME) operating in the corona of one of the binary components. We discuss two kinds of maser sources that may be responsible for driving the observed events. We suggest that the ECME source may be an aurora-like phenomenon due to the transfer of plasma from the K2 subgiant to the G5 dwarf in a strong stellar wind.Comment: Accepted for publication in the Publications of the Astronomical Society of Australi

    Scaling Laws for Advection Dominated Flows: Applications to Low Luminosity Galactic Nuclei

    Get PDF
    We present analytical scaling laws for self-similar advection dominated flows. The spectra from these systems range from 108^{8} - 1020^{20} Hz, and are determined by considering cooling of electrons through synchrotron, bremsstrahlung, and Compton processes. We show that the spectra can be quite accurately reproduced without detailed numerical calculations, and that there is a strong testable correlation between the radio and X-ray fluxes from these systems. We describe how different regions of the spectrum scale with the mass of the accreting black hole, MM, the accretion rate of the gas, M˙\dot{M}, and the equilibrium temperature of the electrons, TeT_e. We show that the universal radio spectral index of 1/3 observed in most elliptical galaxies (Slee et al. 1994) is a natural consequence of self-absorbed synchrotron radiation from these flows. We also give expressions for the total luminosity of these flows, and the critical accretion rate, M˙crit\dot{M}_{crit}, above which the advection solutions cease to exist. We find that for most cases of interest the equilibrium electron temperature is fairly insensitive to MM, M˙\dot{M}, and parameters in the model. We apply these results to low luminosity black holes in galactic nuclei. We show that the problem posed by Fabian & Canizares (1988) of whether bright elliptical galaxies host dead quasars is resolved, as pointed out recently by Fabian & Rees (1995), by considering advection-dominated flows.Comment: 30 pages, 5 postscript files. Accepted to ApJ. Also available http://cfa-www.harvard.edu/~rohan/publications.htm

    Four Extreme Relic Radio Sources in Clusters of Galaxies

    Get PDF
    (Abridged) We describe the results of the highest-resolution radio observations yet made of four relic radio sources in the Abell clusters A13, A85, A133 and A4038. Our VLA images at 1.4 GHz with 4" resolution show a remarkable variety of fine structure in the form of spectacular arcs, wisps, plumes and loops. Their integrated radio flux densities fall very rapidly with frequency, with power-law slopes between 2.1 and 4.4 near 1.4 GHz The relics possess linear polarization levels ranging between 2.3 % (A133) and 35 % (A85); the higher polarization fractions imply a highly ordered magnetic field in the fine structure and low differential Faraday rotation in the intervening cluster gas. The optical identification of host galaxies remains problematic. In A85, A133 and A4038 the travel times for the brightest cluster galaxies are significantly longer than the modeled ages of the relics and nearby bright ellipticals provide a better match. Excess X-ray emission in the 0.5 keV-to-2 keV band was found near the relics in A85 and A133. The surface brightness was too high to be attributed to the inverse-Compton mechanism alone. We found excellent fits to the broad-band radio spectra using the anisotropic (KGKP) model of spectral ageing, and we have extended the model to include diffusion of particles between regions of different field strength (the Murgia-JP, or MJP, model). The steep radio spectra imply ages for the relics of ~ 10^8 yr, at the start of which period their radio luminosities would have been ~ 10^25 W/Hz at 1.4 GHz.Comment: 43 pages, 13 figures, AJ, Sep 2001 (accepted

    The 74MHz System on the Very Large Array

    Full text link
    The Naval Research Laboratory and the National Radio Astronomy Observatory completed implementation of a low frequency capability on the VLA at 73.8 MHz in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam) and resolution (~25 arcsec) for low-frequency observations. We review the hardware, the calibration and imaging strategies, comparing them to those at higher frequencies, including aspects of interference excision and wide-field imaging. Ionospheric phase fluctuations pose the major difficulty in calibrating the array. Over restricted fields of view or at times of extremely quiescent ionospheric ``weather'', an angle-invariant calibration strategy can be used. In this approach a single phase correction is devised for each antenna, typically via self-calibration. Over larger fields of view or at times of more normal ionospheric ``weather'' when the ionospheric isoplanatic patch size is smaller than the field of view, we adopt a field-based strategy in which the phase correction depends upon location within the field of view. This second calibration strategy was implemented by modeling the ionosphere above the array using Zernike polynomials. Images of 3C sources of moderate strength are provided as examples of routine, angle-invariant calibration and imaging. Flux density measurements indicate that the 74 MHz flux scale at the VLA is stable to a few percent, and tied to the Baars et al. value of Cygnus A at the 5 percent level. We also present an example of a wide-field image, devoid of bright objects and containing hundreds of weaker sources, constructed from the field-based calibration. We close with a summary of lessons the 74 MHz system offers as a model for new and developing low-frequency telescopes. (Abridged)Comment: 73 pages, 46 jpeg figures, to appear in ApJ

    Three-dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters

    Full text link
    We report results of 3D MHD simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three dimensional extensions of two dimensional calculations reported by Jones & De Young (2005). Initially spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into "smoke rings", if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with beta = P_gas/P_mag ~ 10^3 can influence the dynamics of the bubbles, provided the fields are not tangled on scales comparable to or smaller than the size of the bubbles. Quasi-uniform, horizontal fields with initial beta ~ 10^2 bifurcated our bubbles before they rose more than about a scale height of the ICM, and substantially weaker fields produced clear distortions. On the other hand, tangled magnetic fields with similar, modest strengths are generally less easily amplified by the bubble motions and are thus less influential in bubble evolution. Inclusion of a comparably strong, tangled magnetic field inside the initial bubbles had little effect on our bubble evolution, since those fields were quickly diminished through expansion of the bubble and reconnection of the initial field.Comment: 20 pages, 12 figures. Accepted for publication in The Astrophysical Journa

    PKS 1018-42: A Powerful Kinetically Dominated Quasar

    Full text link
    We have identified PKS 1018-42 as a radio galaxy with extraordinarily powerful jets, over twice as powerful as any 3CR source of equal or lesser redshift except for one (3C196). It is perhaps the most intrinsically powerful extragalactic radio source in the, still poorly explored, Southern Hemisphere. PKS 1018-42 belongs to the class of FR II objects that are kinetically dominated, the jet kinetic luminosity, Q6.5×1046ergs/sQ \sim 6.5 \times 10^{46}\mathrm{ergs/s} (calculated at 151 MHz), is 3.4 times larger than the total thermal luminosity (IR to X-ray) of the accretion flow, Lbol1.9×1046ergs/sL_{bol} \sim 1.9 \times 10^{46}\mathrm{ergs/s}. It is the fourth most kinetically dominated quasar that we could verify from existing radio data. From a review of the literature, we find that kinetically dominated sources such as PKS 1018-42 are rare, and list the 5 most kinetically dominated sources found from our review. Our results for PKS 1018-42 are based on new observations from the Australia Telescope Compact Array.Comment: To appear in ApJ Letter

    Discovery of Radio Outbursts in the Active Nucleus of M81

    Get PDF
    The low-luminosity active galactic nucleus of M81 has been monitored at centimeter wavelengths since early 1993 as a by-product of radio programs to study the radio emission from Supernova 1993J. The extensive data sets reveal that the nucleus experienced several radio outbursts during the monitoring period. At 2 and 3.6 cm, the main outburst occurred roughly in the beginning of 1993 September and lasted for approximately three months; at longer wavelengths, the maximum flux density decreases, and the onset of the burst is delayed. These characteristics qualitatively resemble the standard model for adiabatically expanding radio sources, although certain discrepancies between the observations and the theoretical predictions suggest that the model is too simplistic. In addition to the large-amplitude, prolonged variations, we also detected milder changes in the flux density at 3.6 cm and possibly at 6 cm on short (less than 1 day) timescales. We discuss a possible association between the radio activity and an optical flare observed during the period that the nucleus was monitored at radio wavelengths.Comment: To appear in The Astronomical Journal. Latex, 18 pages including embedded figures and table

    A Giant Outburst at Millimeter Wavelengths in the Orion Nebula

    Full text link
    BIMA observations of the Orion nebula discovered a giant flare from a young star previously undetected at millimeter wavelengths. The star briefly became the brightest compact object in the nebula at 86 GHz. Its flux density increased by more than a factor of 5 on a timescale of hours, to a peak of 160 mJy. This is one of the most luminous stellar radio flares ever observed. Remarkably, the Chandra X-ray observatory was in the midst of a deep integration of the Orion nebula at the time of the BIMA discovery; the source's X-ray flux increased by a factor of 10 approximately 2 days before the radio detection. Follow-up radio observations with the VLA and BIMA showed that the source decayed on a timescale of days, then flared again several times over the next 70 days, although never as brightly as during the discovery. Circular polarization was detected at 15, 22, and 43 GHz, indicating that the emission mechanism was cyclotron. VLBA observations 9 days after the initial flare yield a brightness temperature Tb > 5 x 10^7 K at 15 GHz. Infrared spectroscopy indicates the source is a K5V star with faint Br gamma emission, suggesting that it is a weak-line T Tauri object. Zeeman splitting measurements in the infrared spectrum find B ~ 2.6 +/- 1.0 kG. The flare is an extreme example of magnetic activity associated with a young stellar object. These data suggest that short observations obtained with ALMA will uncover hundreds of flaring young stellar objects in the Orion region.Comment: 29 pages, 7 figures, accepted for publication in Ap
    corecore