3,695 research outputs found

    Effects of intraword and interword spacing on eye movements during reading: Exploring the optimal use of space in a line of text

    Get PDF
    Two eye movement experiments investigated intra-word spacing (the space between letters within words) and inter-word spacing (the space between words) to explore the influence these variables have on eye movement control during reading. Both variables are important factors in determining the optimal use of space in a line of text, and fonts differ widely in how they employ these spaces. Prior research suggests that the proximity of flanking letters influences the identification of a central letter via lateral inhibition or crowding. If so decrements in intra-word spacing may produce inhibition in word processing. Still other research suggests that increases in intra-word spacing can disrupt the integrity of word units. In English, inter-word spacing has a large influence on word segmentation and is important for saccade target selection. The results indicate interplay between intra and inter word spacing which influence a font’s readability. Additionally, these studies highlight the importance of word segmentation processes and have implications for the nature of lexical processing (serial vs. parallel)

    Saccade launch site as a predictor of fixation durations in reading: Comments on Hand, Miellet, O’Donnell, and Sereno (2010).

    Get PDF
    An important question in research on eye movements in reading is whether word frequency and word predictability have additive or interactive effects on fixation durations. A fair number of studies have reported only additive effects of the frequency and predictability of a target word on reading times on that word, failing to show significant interactions. Recently, however, Hand, Miellet, O'Donnell, and Sereno (see record 2010-19099-001) reported interactive effects in a study that included the distance of the prior fixation from the target word (launch site). They reported that when the saccade into the target word was launched from very near to the word (within 3 characters), the predictability effect was larger for low frequency words, but when the saccade was launched from a medium distance (4-6 characters from the word) the predictability effect was larger for high frequency words. Hand et al. argued for the importance of including launch site in analyses of target word fixation durations. Here we describe several problems with Hand et al.'s use of analyses of variance in which launch site is divided into distinct ordinal levels. We describe a more appropriate way to analyze such data-linear mixed-effect models-and we use this method to show that launch site does not modulate the interaction between frequency and predictability in two other data sets

    Exploring multilocus associations of inflammation genes and colorectal cancer risk using hapConstructor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In candidate-gene association studies of single nucleotide polymorphisms (SNPs), multilocus analyses are frequently of high dimensionality when considering haplotypes or haplotype pairs (diplotypes) and differing modes of expression. Often, while candidate genes are selected based on their biological involvement in a given pathway, little is known about the functionality of SNPs to guide association studies. Investigators face the challenge of exploring multiple SNP models to elucidate which variants, independently or in combination, might be associated with a disease of interest. A data mining module, hapConstructor (freely-available in Genie software) performs systematic construction and association testing of multilocus genotype data in a Monte Carlo framework. Our objective was to assess its utility to guide statistical analyses of haplotypes within a candidate region (or combined genotypes across candidate genes) beyond that offered by a standard logistic regression approach.</p> <p>Methods</p> <p>We applied the hapConstructor method to a multilocus investigation of candidate genes involved in pro-inflammatory cytokine IL6 production, <it>IKBKB</it>, <it>IL6</it>, and <it>NFKB1 </it>(16 SNPs total) hypothesized to operate together to alter colorectal cancer risk. Data come from two U.S. multicenter studies, one of colon cancer (1,556 cases and 1,956 matched controls) and one of rectal cancer (754 cases and 959 matched controls).</p> <p>Results</p> <p>HapConstrcutor enabled us to identify important associations that were further analyzed in logistic regression models to simultaneously adjust for confounders. The most significant finding (nominal <it>P </it>= 0.0004; false discovery rate <it>q </it>= 0.037) was a combined genotype association across <it>IKBKB </it>SNP rs5029748 (1 or 2 variant alleles), <it>IL6 </it>rs1800797 (1 or 2 variant alleles), and <it>NFKB1 </it>rs4648110 (2 variant alleles) which conferred an ~80% decreased risk of colon cancer.</p> <p>Conclusions</p> <p>Strengths of hapConstructor were: systematic identification of multiple loci within and across genes important in CRC risk; false discovery rate assessment; and efficient guidance of subsequent logistic regression analyses.</p

    Effects of ATC automation on precision approaches to closely space parallel runways

    Get PDF
    Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload

    Corrigendum to “Do successor effects in reading reflect lexical parafoveal processing? Evidence from corpus-based and experimental eye movement data” [J. Mem. Lang. 79–80 (2015) 76–96].

    Get PDF
    In the past, most research on eye movements during reading involved a limited number of subjects reading sentences with specific experimental manipulations on target words. Such experiments usually only analyzed eye-movements measures on and around the target word. Recently, some researchers have started collecting larger data sets involving large and diverse groups of subjects reading large numbers of sentences, enabling them to consider a larger number of influences and study larger and more representative subject groups. In such corpus studies, most of the words in a sentence are analyzed. The complexity of the design of corpus studies and the many potentially uncontrolled influences in such studies pose new issues concerning the analysis methods and interpretability of the data. In particular, several corpus studies of reading have found an effect of successor word (n + 1) frequency on current word (n) fixation times, while studies employing experimental manipulations tend not to. The general interpretation of corpus studies suggests that readers obtain parafoveal lexical information from the upcoming word before they have finished identifying the current word, while the experimental manipulations shed doubt on this claim. In the present study, we combined a corpus analysis approach with an experimental manipulation (i.e., a parafoveal modification of the moving mask technique, Rayner & Bertera, 1979), so that, either (a) word n + 1, (b) word n + 2, (c) both words, or (d) neither word was masked. We found that denying preview for either or both parafoveal words increased average fixation times. Furthermore, we found successor effects similar to those reported in the corpus studies. Importantly, these successor effects were found even when the parafoveal word was masked, suggesting that apparent successor frequency effects may be due to causes that are unrelated to lexical parafoveal preprocessing. We discuss the implications of this finding both for parallel and serial accounts of word identification and for the interpretability of large correlational studies of word identification in reading in general

    Two Weeks of High-Intensity Interval Training in Combination With a Non-thermal Diffuse Ultrasound Device Improves Lipid Profile and Reduces Body Fat Percentage in Overweight Women

    Full text link
    This study evaluated the effectiveness of an innovative strategy which combined low-frequency ultra sound (LOFU) with high-intensity interval training (HIIT) to improve physical fitness and promote body fat loss in overweight sedentary women. A placebo controlled, parallel group randomized experimental design was used to investigate the efficacy of a 2-week combined LOFU and HIIT program (3 sessions per week). Participants were allocated into either the Experimental HIIT group (HIITEXP, n = 10) or Placebo HIIT group (HIITPLA, n = 10). Baseline exercise testing (maximal oxygen uptake, lower limb strength and substrate oxidation test), dietary assessment, anthropometric measures and blood sampling were completed in week 1 and repeated in week 4 to determine changes following the program (Post-HIIT). During each training session, the HIITEXP and HIITPLA groups wore a non-thermal diffuse ultrasound belt. However, the belt was only switched on for the HIITEXP group. Delta change scores were calculated for body weight, body fat percentage (Fat%), muscle mass, V.O2max, hip and waist circumferences, and all lipid variables from Baseline to Post-HIIT. Statistical analysis was completed using a repeated-measures factorial analysis of variance by group (HIITPLA and HIITEXP) and time (Baseline and Post-HIIT). Results showed significant improvements in maximal oxygen uptake (HIITEXP; Baseline 24.7 ± 5.4 mL kg–1 min–1, Post-HIIT 28.1 ± 5.5 mL kg–1 min–1 and HIITPLA; Baseline 28.4 ± 5.9 mL kg–1 min–1, Post-HIIT 31.4 ± 5.5 mL kg–1 min–1) for both groups. Significant decreases in Fat% (HIITEXP; Baseline 32.7 ± 3.2%, Post-HIIT 28.9 ± 3.5% and HIITPLA; Baseline 28.9 ± 3.5%, Post-HIIT 28.9 ± 3.4% kg), waist circumference (HIITEXP; Baseline 95.8 ± 9.6 cm, Post-HIIT 89.3 ± 8.9 cm and HIITPLA; Baseline 104.3 ± 3.5 cm, Post-HIIT 103.6 ± 3.4 cm) and triglycerides (HIITEXP; −29.2%, HIITPLA; −6.7%) were observed in the HIITEXP group only. These results show that HIIT combined with LOFU was an effective intervention to improve body composition, lipid profile, and fitness. This combined strategy allowed overweight, sedentary women to achieve positive health outcomes in as little as 2 weeks

    Evidence for direct control of eye movements during reading.

    Get PDF
    It is well established that fixation durations during reading vary with processing difficulty, but there are different views on how oculomotor control, visual perception, shifts of attention, and lexical (and higher cognitive) processing are coordinated. Evidence for a one-to-one translation of input delay into saccadic latency would provide a much needed constraint for current theoretical proposals. Here, we tested predictions of such a direct-control perspective using the stimulus-onset delay (SOD) paradigm. Words in sentences were initially masked and, upon fixation, were individually unmasked with a delay (0-ms, 33-ms, 66-ms, 99-ms SODs). In Experiment 1, SODs were constant for all words in a sentence; in Experiment 2, SODs were manipulated on target words, while non-targets were unmasked without delay. In accordance with predictions of direct control, non-zero SODs entailed equivalent increases in fixation durations in both experiments. Yet, a population of short fixations pointed to rapid saccades as a consequence of low-level information at non-optimal viewing positions rather than of lexical processing. Implications of these results for theoretical accounts of oculomotor control are discussed

    Using session-RPE to monitor training load in swimmers

    Full text link
    The ability to measure and control the internal training load (TL) of athletes is important to optimize athletic performance. However, at present, there are no methods available for evaluating internal tl during swimming. The session-rpe method is a practical, non-invasive system used to quantify the internal tl placed on athletes. This article discusses how the session-rpe method may be used to monitor swim training and ultimately improve the training process of swimmers. Copyright © National Strength and Conditioning Association
    • 

    corecore