7,562 research outputs found

    Hilbert-Schmidt Separability Probabilities and Noninformativity of Priors

    Full text link
    The Horodecki family employed the Jaynes maximum-entropy principle, fitting the mean (b_{1}) of the Bell-CHSH observable (B). This model was extended by Rajagopal by incorporating the dispersion (\sigma_{1}^2) of the observable, and by Canosa and Rossignoli, by generalizing the observable (B_{\alpha}). We further extend the Horodecki one-parameter model in both these manners, obtaining a three-parameter (b_{1},\sigma_{1}^2,\alpha) two-qubit model, for which we find a highly interesting/intricate continuum (-\infty < \alpha < \infty) of Hilbert-Schmidt (HS) separability probabilities -- in which, the golden ratio is featured. Our model can be contrasted with the three-parameter (b_{q}, \sigma_{q}^2,q) one of Abe and Rajagopal, which employs a q(Tsallis)-parameter rather than α\alpha, and has simply q-invariant HS separability probabilities of 1/2. Our results emerge in a study initially focused on embedding certain information metrics over the two-level quantum systems into a q-framework. We find evidence that Srednicki's recently-stated biasedness criterion for noninformative priors yields rankings of priors fully consistent with an information-theoretic test of Clarke, previously applied to quantum systems by Slater.Comment: 26 pages, 12 figure

    Apollo 9 multiband photography experiment 5065 Interim post-flight calibration report

    Get PDF
    Camera and filter postflight spectrum analysis for Apollo 9 multiband photography experimen

    A priori probability that a qubit-qutrit pair is separable

    Full text link
    We extend to arbitrarily coupled pairs of qubits (two-state quantum systems) and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181), which was concerned with the simplest instance of entangled quantum systems, pairs of qubits. As in that analysis -- again on the basis of numerical (quasi-Monte Carlo) integration results, but now in a still higher-dimensional space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical distinguishability) probability that arbitrarily paired qubits and qutrits are separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive primes). This is considerably less than the conjectured value of the Bures/SD probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these conjectures, in turn, rely upon ones to the effect that the SD volumes of separable states assume certain remarkable forms, involving "primorial" numbers. We also estimate the SD area of the boundary of separable qubit-qutrit states, and provide preliminary calculations of the Bures/SD probability of separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures volume of mixed quantum states" to refine our conjecture

    Quantum and Fisher Information from the Husimi and Related Distributions

    Full text link
    The two principal/immediate influences -- which we seek to interrelate here -- upon the undertaking of this study are papers of Zyczkowski and Slomczy\'nski (J. Phys. A 34, 6689 [2001]) and of Petz and Sudar (J. Math. Phys. 37, 2262 [1996]). In the former work, a metric (the Monge one, specifically) over generalized Husimi distributions was employed to define a distance between two arbitrary density matrices. In the Petz-Sudar work (completing a program of Chentsov), the quantum analogue of the (classically unique) Fisher information (montone) metric of a probability simplex was extended to define an uncountable infinitude of Riemannian (also monotone) metrics on the set of positive definite density matrices. We pose here the questions of what is the specific/unique Fisher information metric for the (classically-defined) Husimi distributions and how does it relate to the infinitude of (quantum) metrics over the density matrices of Petz and Sudar? We find a highly proximate (small relative entropy) relationship between the probability distribution (the quantum Jeffreys' prior) that yields quantum universal data compression, and that which (following Clarke and Barron) gives its classical counterpart. We also investigate the Fisher information metrics corresponding to the escort Husimi, positive-P and certain Gaussian probability distributions, as well as, in some sense, the discrete Wigner pseudoprobability. The comparative noninformativity of prior probability distributions -- recently studied by Srednicki (Phys. Rev. A 71, 052107 [2005]) -- formed by normalizing the volume elements of the various information metrics, is also discussed in our context.Comment: 27 pages, 10 figures, slight revisions, to appear in J. Math. Phy

    Volume of the quantum mechanical state space

    Full text link
    The volume of the quantum mechanical state space over nn-dimensional real, complex and quaternionic Hilbert-spaces with respect to the canonical Euclidean measure is computed, and explicit formulas are presented for the expected value of the determinant in the general setting too. The case when the state space is endowed with a monotone metric or a pull-back metric is considered too, we give formulas to compute the volume of the state space with respect to the given Riemannian metric. We present the volume of the space of qubits with respect to various monotone metrics. It turns out that the volume of the space of qubits can be infinite too. We characterize those monotone metrics which generates infinite volume.Comment: 17 page

    Hall Normalization Constants for the Bures Volumes of the n-State Quantum Systems

    Full text link
    We report the results of certain integrations of quantum-theoretic interest, relying, in this regard, upon recently developed parameterizations of Boya et al of the n x n density matrices, in terms of squared components of the unit (n-1)-sphere and the n x n unitary matrices. Firstly, we express the normalized volume elements of the Bures (minimal monotone) metric for n = 2 and 3, obtaining thereby "Bures prior probability distributions" over the two- and three-state systems. Then, as an essential first step in extending these results to n > 3, we determine that the "Hall normalization constant" (C_{n}) for the marginal Bures prior probability distribution over the (n-1)-dimensional simplex of the n eigenvalues of the n x n density matrices is, for n = 4, equal to 71680/pi^2. Since we also find that C_{3} = 35/pi, it follows that C_{4} is simply equal to 2^{11} C_{3}/pi. (C_{2} itself is known to equal 2/pi.) The constant C_{5} is also found. It too is associated with a remarkably simple decompositon, involving the product of the eight consecutive prime numbers from 2 to 23. We also preliminarily investigate several cases, n > 5, with the use of quasi-Monte Carlo integration. We hope that the various analyses reported will prove useful in deriving a general formula (which evidence suggests will involve the Bernoulli numbers) for the Hall normalization constant for arbitrary n. This would have diverse applications, including quantum inference and universal quantum coding.Comment: 14 pages, LaTeX, 6 postscript figures. Revised version to appear in J. Phys. A. We make a few slight changes from the previous version, but also add a subsection (III G) in which several variations of the basic problem are newly studied. Rather strong evidence is adduced that the Hall constants are related to partial sums of denominators of the even-indexed Bernoulli numbers, although a general formula is still lackin

    Molecular Gas, Dust and Star Formation in Galaxies: II. Dust properties and scalings in \sim\ 1600 nearby galaxies

    Full text link
    We aim to characterize the relationship between dust properties. We also aim to provide equations to estimate accurate dust properties from limited observational datasets. We assemble a sample of 1,630 nearby (z<0.1) galaxies-over a large range of Mstar, SFR - with multi-wavelength observations available from wise, iras, planck and/or SCUBA. The characterization of dust emission comes from SED fitting using Draine & Li dust models, which we parametrize using two components (warm and cold ). The subsample of these galaxies with global measurements of CO and/or HI are used to explore the molecular and/or atomic gas content of the galaxies. The total Lir, Mdust and dust temperature of the cold component (Tc) form a plane that we refer to as the dust plane. A galaxy's sSFR drives its position on the dust plane: starburst galaxies show higher Lir, Mdust and Tc compared to Main Sequence and passive galaxies. Starburst galaxies also show higher specific Mdust (Mdust/Mstar) and specific Mgas (Mgas/Mstar). The Mdust is more closely correlated with the total Mgas (atomic plus molecular) than with the individual components. Our multi wavelength data allows us to define several equations to estimate Lir, Mdust and Tc from one or two monochromatic luminosities in the infrared and/or sub-millimeter. We estimate the dust mass and infrared luminosity from a single monochromatic luminosity within the R-J tail of the dust emission, with errors of 0.12 and 0.20dex, respectively. These errors are reduced to 0.05 and 0.10 dex, respectively, if the Tc is used. The Mdust is correlated with the total Mism (Mism \propto Mdust^0.7). For galaxies with Mstar 8.5<log(Mstar/Msun) < 11.9, the conversion factor \alpha_850mum shows a large scatter (rms=0.29dex). The SF mode of a galaxy shows a correlation with both the Mgass and Mdust: high Mdust/Mstar galaxies are gas-rich and show the highest SFRs.Comment: 24 pages, 28 figures, 6 tables, Accepted for publication in A&

    Finite-level systems, Hermitian operators, isometries, and a novel parameterization of Stiefel and Grassmann manifolds

    Full text link
    In this paper we obtain a description of the Hermitian operators acting on the Hilbert space \C^n, description which gives a complete solution to the over parameterization problem. More precisely we provide an explicit parameterization of arbitrary nn-dimensional operators, operators that may be considered either as Hamiltonians, or density matrices for finite-level quantum systems. It is shown that the spectral multiplicities are encoded in a flag unitary matrix obtained as an ordered product of special unitary matrices, each one generated by a complex nkn-k-dimensional unit vector, k=0,1,...,n2k=0,1,...,n-2. As a byproduct, an alternative and simple parameterization of Stiefel and Grassmann manifolds is obtained.Comment: 21 page

    Symmetry Breaking of Relativistic Multiconfiguration Methods in the Nonrelativistic Limit

    Full text link
    The multiconfiguration Dirac-Fock method allows to calculate the state of relativistic electrons in atoms or molecules. This method has been known for a long time to provide certain wrong predictions in the nonrelativistic limit. We study in full mathematical details the nonlinear model obtained in the nonrelativistic limit for Be-like atoms. We show that the method with sp+pd configurations in the J=1 sector leads to a symmetry breaking phenomenon in the sense that the ground state is never an eigenvector of L^2 or S^2. We thereby complement and clarify some previous studies.Comment: Final version, to appear in Nonlinearity. Nonlinearity (2010) in pres

    Application of the Cluster Variation Method to Spin Ice Systems on the Pyrochlore Lattice

    Full text link
    The cactus approximation in the cluster variation method is applied to the spin ice system with nearest neighbor ferromagnetic coupling. The temperature dependences of the entropy and the specific heat show qualitatively good agreement with those observed by Monte Carlo simulations and experiments, and the Pauling value is reproduced for the residual entropy. The analytic expression of the q-dependent magnetic susceptibility is obtained, from which the absence of magnetic phase transition is confirmed. The neutron scattering pattern is also evaluated and found to be consistent with that obtained from Monte Carlo simulations.Comment: 8 pages, 7 figure
    corecore