4,711 research outputs found

    Absence of Translational Symmetry Breaking in Nonmagnetic Insulator Phase on Two-Dimensional Lattice with Geometrical Frustration

    Full text link
    The ground-state properties of the two-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hoppings at half filling are studied by the path-integral-renormalization-group method. The nonmagnetic-insulator phase sandwiched by the the paramagnetic-metal phase and the antiferromagnetic-insulator phase shows evidence against translational symmetry breaking of the dimerized state, plaquette singlet state, staggered flux state, and charge ordered state. These results support that the genuine Mott insulator which cannot be adiabatically continued to the band insulator is realized generically by Umklapp scattering through the effects of geometrical frustration and quantum fluctuation in the two-dimensional system.Comment: 4 pages and 7 figure

    Pressure Effects in Manganites with Layered Perovskite Structure

    Full text link
    Pressure effects on the charge and spin dynamics in the bilayer manganite compounds La22xSr1+2xMn2O7La_{2-2x}Sr_{1+2x}Mn_2O_7 are studied theoretically by taking into account the orbital degrees of freedom. The orbital degrees are active in the layered crystal structure, and applied hydrostatic pressure stabilizes the 3dx2y23d_{x^2-y^2} orbital in comparison with 3d3z2r23d_{3z^2-r^2}. The change of the orbital states weakens the interlayer charge and spin couplings, and suppresses the three dimensional ferromagnetic transition. Numerical results, based on an effective Hamiltonian which includes the energy level difference of the orbitals, show that the applied pressure controls the dimensionality of the spin and charge dynamics through changes of the orbital states.Comment: 5 pages, 2 figure

    Estimates of electronic interaction parameters for LaMMO3_3 compounds (MM=Ti-Ni) from ab-initio approaches

    Full text link
    We have analyzed the ab-initio local density approximation band structure calculations for the family of perovskite oxides, LaMMO3_3 with MM=Ti-Ni within a parametrized nearest neighbor tight-binding model and extracted various interaction strengths. We study the systematics in these interaction parameters across the transition metal series and discuss the relevance of these in a many-body description of these oxides. The results obtained here compare well with estimates of these parameters obtained via analysis of electron spectroscopic results in conjunction with the Anderson impurity model. The dependence of the hopping interaction strength, t, is found to be approximately r3r^{-3}.Comment: 18 pages; 1 tex file+9 postscript files (appeared in Phys Rev B Oct 15,1996

    A generalization of the q-Saalschutz sum and the Burge transform

    Full text link
    A generalization of the q-(Pfaff)-Saalschutz summation formula is proved. This implies a generalization of the Burge transform, resulting in an additional dimension of the ``Burge tree''. Limiting cases of our summation formula imply the (higher-level) Bailey lemma, provide a new decomposition of the q-multinomial coefficients, and can be used to prove the Lepowsky and Primc formula for the A_1^{(1)} string functions.Comment: 18 pages, AMSLaTe

    Spin-orbit coupling and crystal-field splitting in the electronic and optical properties of nitride quantum dots with a wurtzite crystal structure

    Full text link
    We present an sp3sp^3 tight-binding model for the calculation of the electronic and optical properties of wurtzite semiconductor quantum dots (QDs). The tight-binding model takes into account strain, piezoelectricity, spin-orbit coupling and crystal-field splitting. Excitonic absorption spectra are calculated using the configuration interaction scheme. We study the electronic and optical properties of InN/GaN QDs and their dependence on structural properties, crystal-field splitting, and spin-orbit coupling.Comment: 9 pages, 6 figure

    Multipole as ff-Electron Spin-Charge Density in Filled Skutterudites

    Full text link
    It is shown that ff-electron multipole is naturally defined as spin-charge one-electron density operator in the second-quantized form with the use of tensor operator on the analogy of multipole expansion of electromagnetic potential from charge distribution in electromagnetism. Due to this definition of multipole, it is possible to determine multipole state from a microscopic viewpoint on the basis of the standard linear response theory for multipole susceptibility. In order to discuss multipole properties of filled skutterudites, we analyze a seven-orbital impurity Anderson model by employing a numerical renormalization group method. We show our results on possible multipole states of filled skutterudite compounds.Comment: To appear in the Proceedings of International Conference on "New Quantum Phenomena in Skutterudite and Related Systems" (September 2007, Kobe, Japan

    Wireless ion selective electrode autonomous sensing system

    Get PDF
    A paradigm shift in sensing methods and principles is required to meet the legislative demands for detecting hazardous substances in the molecular world. This will encompass the development of new sensing technologies capable of performing very selective and sensitive measurements at an acceptable cost, developed by multidisciplinary teams of chemists, engineers and computer scientists to harvest information from a multitude of molecular targets in health, food and the environment. In this study we present the successful implementation of a low-cost, wireless chemical sensing system that employs a minimum set of components for effective operation. Specifically, our efforts resulted in a wireless, tri-electrode, ISE pH sensor for use in environmental monitoring. Sensor calibration and validated insitu field trials have been carried out and are presented in this paper

    Study of intrinsic spin and orbital Hall effects in Pt based on a (6s, 6p, 5d) tight-binding model

    Full text link
    We study the origin of the intrinsic spin Hall conductivity (SHC) and the d-orbital Hall conductivity (OHC) in Pt based on a multiorbital tight-binding model with spin-orbit interaction. We find that the SHC reaches 1000 \hbar/e\Omega cm when the resistivity \rho is smaller than ~10 \mu\Omega cm, whereas it decreases to 300 \hbar/e\Omega cm when \rho ~ 100 \mu\Omega cm. In addition, the OHC is still larger than the SHC. The origin of huge SHE and OHE in Pt is the large ``effective magnetic flux'' that is induced by the interorbital transition between d_{xy}- and d_{x2-y2}-orbitals with the aid of the strong spin-orbit interaction.Comment: 5 page
    corecore