3,768 research outputs found

    EVALUATION OF THE 2006/7 AGRICULTURAL INPUT SUBSIDY PROGRAMME, MALAWI. FINAL REPORT

    Get PDF
    This report evaluates the 2006/7 Malawi Government Agricultural Input Subsidy Programme (AISP). The main objective of the evaluation is to assess the impact and implementation of the AISP in order to provide lessons for future interventions in growth and social protection. The evaluation combined qualitative and quantitative methods of data collection and analysis. Quantitative data were collected through a national survey in 2007 of 2,491 households who were previously interviewed in the 2004/05 Integrated Household Survey, a survey of retail shops selling inputs in six districts and data on stocks and sales from manufacturers, large-scale importers and dealers of fertilizers and seeds. The quantitative data was triangulated by qualitative data from focus group discussions with smallholder farmers in 12 districts, and key informant interviews with government staff, input distributors and beneficiary and non-beneficiary households. The analysis is based on descriptive statistics, econometric modelling and livelihood and rural economy modelling. An Interim Report in March 2007 provides fuller details of the implementation of the programme.Agribusiness, Agricultural and Food Policy, Community/Rural/Urban Development, Food Consumption/Nutrition/Food Safety, Food Security and Poverty, Productivity Analysis,

    Structure and magnetic properties of the cubic oxide fluoride BaFeO2F

    Get PDF
    Fluorination of the parent oxide, BaFeO3- δ, with polyvinylidine fluoride gives rise to a cubic compound with a = 4.0603(4) Å at 298K. 57Fe Mössbauer spectra confirmed that all the iron is present as Fe3+. Neutron diffraction data showed complete occupancy of the anion sites indicating a composition BaFeO2F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as TN = 645±5K. Neutron diffraction data at 4.2K established G-type antiferromagnetism with a magnetic moment per Fe3+ ion of 3.95μB. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment which is assigned to the canting of the antiferromagnetic structure. 57Fe Mössbauer spectra in the temperature range 10 to 300K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cel

    Enhanced H2O2 Production via Photocatalytic O2 Reduction over Structurally-Modified Poly(heptazine imide)

    Get PDF
    Solar H2O2 produced by O2 reduction provides a green, efficient, and ecological alternative to the industrial anthraquinone process and H2/O2 direct-synthesis. We report efficient photocatalytic H2O2 production at a rate of 73.4 mM h–1 in the presence of a sacrificial donor on a structurally engineered catalyst, alkali metal-halide modulated poly(heptazine imide) (MX → PHI). The reported H2O2 production is nearly 150 and >4250 times higher than triazine structured pristine carbon nitride under UV–visible and visible light (≥400 nm) irradiation, respectively. Furthermore, the solar H2O2 production rate on MX → PHI is higher than most of the previously reported carbon nitride (triazine, tri-s-triazine), metal oxides, metal sulfides, and other metal–organic photocatalysts. A record high AQY of 96% at 365 nm and 21% at 450 nm was observed. We find that structural modulation by alkali metal-halides results in a highly photoactive MX → PHI catalyst which has a broader light absorption range, enhanced light absorption ability, tailored bandgap, and a tunable band edge position. Moreover, this material has a different polymeric structure, high O2 trapping ability, interlayer intercalation, as well as surface decoration of alkali metals. The specific C≡N groups and surface defects, generated by intercalated MX, were also considered as potential contributors to the separation of photoinduced electron–hole pairs, leading to enhanced photocatalytic activity. A synergy of all these factors contributes to a higher H2O2 production rate. Spectroscopic data help us to rationalize the exceptional photochemical performance and structural characteristics of MX → PHI

    Isolated PdO sites on SiO2-supported NiO nanoparticles as active sites for allylic alcohol selective oxidation

    Get PDF
    Silica-supported NiO nanoparticles as hosts for isolated PdO catalytic sites. Isolate PdO is confirmed as the species responsible for the chemoselective oxidation of cinnamyl alcohol to cinnamaldehyde by operando X-ray absorption spectroscop

    Cd/Pt Precursor Solution for Solar H-2 Production and in situ Photochemical Synthesis of Pt Single-atom Decorated CdS Nanoparticles

    Get PDF
    Despite extensive efforts to develop high-performance H2 evolution catalysts, this remains a major challenge. Here, we demonstrate the use of Cd/Pt precursor solutions for significant photocatalytic H2 production (154.7 mmol g−1 h−1), removing the need for a pre-synthesized photocatalyst. In addition, we also report simultaneous in situ synthesis of Pt single-atoms anchored CdS nanoparticles (PtSA-CdSIS) during photoirradiation. The highly dispersed in situ incorporation of extensive Pt single atoms on CdSIS enables the enhancement of active sites and suppresses charge recombination, which results in exceptionally high solar-to-hydrogen conversion efficiency of ≈1 % and an apparent quantum yield of over 91 % (365 nm) for H2 production. Our work not only provides a promising strategy for maximising H2 production efficiency but also provides a green process for H2 production and the synthesis of highly photoactive PtSA-CdSIS nanoparticles

    Geometric phases for non-degenerate and degenerate mixed states

    Full text link
    This paper focuses on the geometric phase of general mixed states under unitary evolution. Here we analyze both non-degenerate as well as degenerate states. Starting with the non-degenerate case, we show that the usual procedure of subtracting the dynamical phase from the total phase to yield the geometric phase for pure states, does not hold for mixed states. To this end, we furnish an expression for the geometric phase that is gauge invariant. The parallelity conditions are shown to be easily derivable from this expression. We also extend our formalism to states that exhibit degeneracies. Here with the holonomy taking on a non-abelian character, we provide an expression for the geometric phase that is manifestly gauge invariant. As in the case of the non-degenerate case, the form also displays the parallelity conditions clearly. Finally, we furnish explicit examples of the geometric phases for both the non-degenerate as well as degenerate mixed states.Comment: 23 page

    Unravelling the transport mechanism of pore-filled membranes for hydrogen separation

    Get PDF
    The permeation characteristics of palladium pore filled (PF) membranes have been investigated with gas permeation and structural characterization of the membranes. PF membranes have been prepared by filling with Pd the nanoporous γ-Al2O3/YSZ (or pure YSZ) layer supported onto porous α-Al2O3 and ZrO2. The number of nanoporous layers and the applied vacuum level during the electroless plating process have been studied. Gas permeation properties of the PF membranes have been determined in a temperature range of 300-550 °C. The measured hydrogen permeances have been found to be lower than previously reported for similar membranes. It has been found that the hydrogen fluxes do not depend on the thickness of the nanoporous layers (γ-Al2O3/YSZ or pure YSZ) or on the vacuum pump employed for filling with Pd. The physicochemical characterization performed showed that the palladium deposited does not form a percolated network across the mesoporous layer(s), leading to low hydrogen permeances and thus low H2/N2 perm-selectivities.The presented work is funded within FERRET project as part of European Union’s Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621181. The Talos TEM was funded as part of HEFCE funding in the UK Research Partnership Investment Funding (UKRPIF) Manchester RPIF Round 2

    Effects of polylinker uATGs on the function of grass HKT1 transporters expressed in yeast cells

    Full text link
    HvHKT1 mediates K+ or Na+ uniport in yeast cells if the expression promoter is joined directly to the HvHKT1 cDNA, and Na+-K+ symport if a 59-nt polylinker is inserted. Our results show that three ATG triplets in the polylinker decreased the synthesis of the transporter and that the lower amount of transporter caused the functional change. With the rice HKT1 cDNA, the 59-nt polylinker changed the mode of Na+ uptake from K+-insensitive to K+-inhibitable. These two modes of Na+ uptake also occurred in rice plant

    Automated Single-Particle Reconstruction of Heterogeneous Inorganic Nanoparticles

    Get PDF
    Single-particle reconstruction can be used to perform three-dimensional (3D) imaging of homogeneous populations of nano-sized objects, in particular viruses and proteins. Here, it is demonstrated that it can also be used to obtain 3D reconstructions of heterogeneous populations of inorganic nanoparticles. An automated acquisition scheme in a scanning transmission electron microscope is used to collect images of thousands of nanoparticles. Particle images are subsequently semi-automatically clustered in terms of their properties and separate 3D reconstructions are performed from selected particle image clusters. The result is a 3D dataset that is representative of the full population. The study demonstrates a methodology that allows 3D imaging and analysis of inorganic nanoparticles in a fully automated manner that is truly representative of large particle populations.Peer reviewe

    Temporal lobe white matter asymmetry and language laterality in epilepsy patients.

    Get PDF
    Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard-the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca\u27s area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bi-hemispheric dominance
    corecore