research

Geometric phases for non-degenerate and degenerate mixed states

Abstract

This paper focuses on the geometric phase of general mixed states under unitary evolution. Here we analyze both non-degenerate as well as degenerate states. Starting with the non-degenerate case, we show that the usual procedure of subtracting the dynamical phase from the total phase to yield the geometric phase for pure states, does not hold for mixed states. To this end, we furnish an expression for the geometric phase that is gauge invariant. The parallelity conditions are shown to be easily derivable from this expression. We also extend our formalism to states that exhibit degeneracies. Here with the holonomy taking on a non-abelian character, we provide an expression for the geometric phase that is manifestly gauge invariant. As in the case of the non-degenerate case, the form also displays the parallelity conditions clearly. Finally, we furnish explicit examples of the geometric phases for both the non-degenerate as well as degenerate mixed states.Comment: 23 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019