9,847 research outputs found

    Relationships between surface and column aerosol radiative properties and air mass transport at a rural New England site

    Get PDF
    Chemical, physical, and radiative properties of surface and vertical column aerosols were measured at a rural site in southern New Hampshire from July 2000 to September 2001. The primary objective was to determine how intensive and extensive aerosol properties vary in air masses originating in different upwind regions. The data set also allows for an investigation of some of the relationships between surface and column aerosol properties at the site, and provides an estimate of direct radiative forcing by aerosols during the study period. Extensive properties (e.g., optical depth and chemical concentration) were at maximum values during times of south-southwest (S-SW) transport, while minimum values were seen during north-northeast (N-NE) transport. Certain intensive properties such as fine particle mass scattering efficiency did not vary significantly between times of transport from different source regions. Mean optical depth (wavelength = 500 nm) was 0.24 during S-SW transport, compared to 0.10 during N-NE transport. The study period average scattering efficiency for (NH4)2SO4 was 6.54 ± 0.26 m2 g−1 (± standard error) and 3.36 ± 0.49 m2 g−1 for organic carbon, while the absorption efficiency of elemental carbon was 12.85 ± 0.80 m2 g−1. Top of the atmosphere aerosol direct radiative forcing was −0.35 ± 0.83 Wm−2 (±1 standard deviation) in winter 2000–2001 and −9.06 ± 3.77 Wm−2 in summer 2001, differences that can be primarily attributed to seasonal changes in surface reflectance (high in winter, low in summer) and the relatively low values of single scatter albedo observed in winter. The annual average direct radiative forcing was −5.14 ± 4.32 Wm−2. We generally observed a moderate correlation between surface and column aerosol light extinction, suggesting that vertical column aerosol radiative properties measured by surface-based radiometers should be supplemented by boundary layer measurements of aerosol chemical, physical, and radiative properties to help understand the mechanisms contributing to global aerosol variability

    Stepping outside normative neoliberal discourse: youth and disability meet – the case of Jody McIntyre

    Get PDF
    In May 2010, amidst the ‘global financial crisis’ a Conservative/Liberal Democrat coalition government succeeded a 12-year reign of New Labour in the United Kingdom, and ushered in massive welfare cuts. Although New Labour tabled major welfare and disability benefit reform, they arguably did not activate the harshest of these. This paper focuses on the backlash of youth and disability in the form of demonstrations; two groups that are being hit hard by the political shift to work-first welfare in an era of employment scarcity. The case of young disabled activist Jody McIntyre is used to explore parallels and divergences in neoliberal and ‘populist’ discourses of ‘risky’, troubling’ youth and disability

    On the nucleon-nucleon interaction leading to a standing wave instability in symmetric nuclear matter

    Get PDF
    We examine a recently proposed nucleon-nucleon interaction, claimed by its authors both realistic and leading to a standing wave instability in symmetric nuclear matter. Contrary to these claims, we find that this interaction leads to a serious overbinding of 4He, 16O and 40Ca nuclei when the Hartree-Fock method is properly applied. The resulting nuclear densities contradict the experimental data and all realistic Hartree-Fock results.Comment: 4 pages, 1 figur

    A priori probability that a qubit-qutrit pair is separable

    Full text link
    We extend to arbitrarily coupled pairs of qubits (two-state quantum systems) and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181), which was concerned with the simplest instance of entangled quantum systems, pairs of qubits. As in that analysis -- again on the basis of numerical (quasi-Monte Carlo) integration results, but now in a still higher-dimensional space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical distinguishability) probability that arbitrarily paired qubits and qutrits are separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive primes). This is considerably less than the conjectured value of the Bures/SD probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these conjectures, in turn, rely upon ones to the effect that the SD volumes of separable states assume certain remarkable forms, involving "primorial" numbers. We also estimate the SD area of the boundary of separable qubit-qutrit states, and provide preliminary calculations of the Bures/SD probability of separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures volume of mixed quantum states" to refine our conjecture

    Rydberg transition frequencies from the Local Density Approximation

    Full text link
    A method is given that extracts accurate Rydberg excitations from LDA density functional calculations, despite the short-ranged potential. For the case of He and Ne, the asymptotic quantum defects predicted by LDA are in less than 5% error, yielding transition frequency errors of less than 0.1eV.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let

    Built environment assessment: Multidisciplinary perspectives.

    Get PDF
    Context:As obesity has become increasingly widespread, scientists seek better ways to assess and modify built and social environments to positively impact health. The applicable methods and concepts draw on multiple disciplines and require collaboration and cross-learning. This paper describes the results of an expert team׳s analysis of how key disciplinary perspectives contribute to environmental context-based assessment related to obesity, identifies gaps, and suggests opportunities to encourage effective advances in this arena. Evidence acquisition:A team of experts representing diverse disciplines convened in 2013 to discuss the contributions of their respective disciplines to assessing built environments relevant to obesity prevention. The disciplines include urban planning, public health nutrition, exercise science, physical activity research, public health and epidemiology, behavioral and social sciences, and economics. Each expert identified key concepts and measures from their discipline, and applications to built environment assessment and action. A selective review of published literature and internet-based information was conducted in 2013 and 2014. Evidence synthesis:The key points that are highlighted in this article were identified in 2014-2015 through discussion, debate and consensus-building among the team of experts. Results focus on the various disciplines׳ perspectives and tools, recommendations, progress and gaps. Conclusions:There has been significant progress in collaboration across key disciplines that contribute to studies of built environments and obesity, but important gaps remain. Using lessons from interprofessional education and team science, along with appreciation of and attention to other disciplines׳ contributions, can promote more effective cross-disciplinary collaboration in obesity prevention

    Solving the two-center nuclear shell-model problem with arbitrarily-orientated deformed potentials

    Full text link
    A general new technique to solve the two-center problem with arbitrarily-orientated deformed realistic potentials is demonstrated, which is based on the powerful potential separable expansion method. As an example, molecular single-particle spectra for 12^{12}C + 12^{12}C →\to 24^{24}Mg are calculated using deformed Woods-Saxon potentials. These clearly show that non-axial symmetric configurations play a crucial role in molecular resonances observed in reaction processes for this system at low energy

    Broad-band polarization-independent total absorption of electromagnetic waves by an overdense plasma

    Full text link
    We have shown both experimentally and theoretically that polarization-independent broad-band absorption of electromagnetic waves by an overdense plasma, caused by surface plasmon-polaritons (SPP) excitation, can be achieved due to combination of two factors: a non-zero angle of incidence and a two-dimensional circular diffraction grating placed at a properly chosen distance in front of the plasma boundary. Direct detection of SPP has been achieved for the first time using a miniature antenna imbedded in the plasma.Comment: considerably broadened versio

    The Role of ctDNA in Gastric Cancer.

    Get PDF
    Circulating tumour DNA (ctDNA) has potential applications in gastric cancer (GC) with respect to screening, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision making and therapeutic monitoring. It can provide a less invasive and convenient method to capture the tumoural genomic landscape compared to tissue-based next-generation DNA sequencing (NGS). In addition, ctDNA can potentially overcome the challenges of tumour heterogeneity seen with tissue-based NGS. Although the evidence for ctDNA in GC is evolving, its potential utility is far reaching and may shape the management of this disease in the future. This article will review the current and future applications of ctDNA in GC

    Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    Full text link
    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven with a constant rate. The time evolution of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the performed work during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility.Comment: 21 pages, 7 figure
    • …
    corecore