10,718 research outputs found

    Traveling sealer for contoured table Patent

    Get PDF
    Sealing apparatus for joining two pieces of frangible material

    A priori probability that a qubit-qutrit pair is separable

    Full text link
    We extend to arbitrarily coupled pairs of qubits (two-state quantum systems) and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181), which was concerned with the simplest instance of entangled quantum systems, pairs of qubits. As in that analysis -- again on the basis of numerical (quasi-Monte Carlo) integration results, but now in a still higher-dimensional space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical distinguishability) probability that arbitrarily paired qubits and qutrits are separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive primes). This is considerably less than the conjectured value of the Bures/SD probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these conjectures, in turn, rely upon ones to the effect that the SD volumes of separable states assume certain remarkable forms, involving "primorial" numbers. We also estimate the SD area of the boundary of separable qubit-qutrit states, and provide preliminary calculations of the Bures/SD probability of separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures volume of mixed quantum states" to refine our conjecture

    Spin-dependent transport in molecular tunnel junctions

    Full text link
    We present measurements of magnetic tunnel junctions made using a self-assembled-monolayer molecular barrier. Ni/octanethiol/Ni samples were fabricated in a nanopore geometry. The devices exhibit significant changes in resistance as the angle between the magnetic moments in the two electrodes is varied, demonstrating that low-energy electrons can traverse the molecular barrier while maintaining spin coherence. An analysis of the voltage and temperature dependence of the data suggests that the spin-coherent transport signals can be degraded by localized states in the molecular barriers.Comment: 4 pages, 5 color figure

    Variational Monte Carlo for spin-orbit interacting systems

    Full text link
    Recently, a diffusion Monte Carlo algorithm was applied to the study of spin dependent interactions in condensed matter. Following some of the ideas presented therein, and applied to a Hamiltonian containing a Rashba-like interaction, a general variational Monte Carlo approach is here introduced that treats in an efficient and very accurate way the spin degrees of freedom in atoms when spin orbit effects are included in the Hamiltonian describing the electronic structure. We illustrate the algorithm on the evaluation of the spin-orbit splittings of isolated carbon and lead atoms. In the case of the carbon atom, we investigate the differences between the inclusion of spin-orbit in its realistic and effective spherically symmetrized forms. The method exhibits a very good accuracy in describing the small energy splittings, opening the way for a systematic quantum Monte Carlo studies of spin-orbit effects in atomic systems.Comment: 7 pages, 0 figure

    Fundamental Behavior of Electric Field Enhancements in the Gaps Between Closely Spaced Nanostructures

    Full text link
    We demonstrate that the electric field enhancement that occurs in a gap between two closely spaced nanostructures, such as metallic nanoparticles, is the result of a transverse electromagnetic waveguide mode. We derive an explicit semianalytic equation for the enhancement as a function of gap size, which we show has a universal qualitative behavior in that it applies irrespective of the material or geometry of the nanostructures and even in the presence of surface plasmons. Examples of perfect electrically conducting and Ag thin-wire antennas and a dimer of Ag spheres are presented and discussed.Comment: 9 pages and 4 figure

    Transfer function modeling of damping mechanisms in distributed parameter models

    Get PDF
    This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems

    High-Temperature Expansions of Bures and Fisher Information Priors

    Full text link
    For certain infinite and finite-dimensional thermal systems, we obtain --- incorporating quantum-theoretic considerations into Bayesian thermostatistical investigations of Lavenda --- high-temperature expansions of priors over inverse temperature beta induced by volume elements ("quantum Jeffreys' priors) of Bures metrics. Similarly to Lavenda's results based on volume elements (Jeffreys' priors) of (classical) Fisher information metrics, we find that in the limit beta -> 0, the quantum-theoretic priors either conform to Jeffreys' rule for variables over [0,infinity], by being proportional to 1/beta, or to the Bayes-Laplace principle of insufficient reason, by being constant. Whether a system adheres to one rule or to the other appears to depend upon its number of degrees of freedom.Comment: Six pages, LaTeX. The title has been shortened (and then further modified), at the suggestion of a colleague. Other minor change

    Realistic Tight Binding Model for the Electronic Structure of II-VI Semiconductors

    Get PDF
    We analyze the electronic structure of group II-VI semiconductors obtained within LMTO approach in order to arrive at a realistic and minimal tight binding model, parameterized to provide an accurate description of both valence and conduction bands. It is shown that a nearest-neighbor sp3d5sp^3d^5 model is fairly sufficient to describe to a large extent the electronic structure of these systems over a wide energy range, obviating the use of any fictitious s∗s^* orbital. The obtained hopping parameters obey the universal scaling law proposed by Harrison, ensuring transferability to other systems. Furthermore, we show that certain subtle features in the bonding of these compounds require the inclusion of anion-anion interactions in addition to the nearest-neighbor cation-anion interactions.Comment: 9 pages, 9 figure

    Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    Full text link
    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven with a constant rate. The time evolution of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the performed work during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility.Comment: 21 pages, 7 figure
    • …
    corecore