Recently, a diffusion Monte Carlo algorithm was applied to the study of spin
dependent interactions in condensed matter. Following some of the ideas
presented therein, and applied to a Hamiltonian containing a Rashba-like
interaction, a general variational Monte Carlo approach is here introduced that
treats in an efficient and very accurate way the spin degrees of freedom in
atoms when spin orbit effects are included in the Hamiltonian describing the
electronic structure. We illustrate the algorithm on the evaluation of the
spin-orbit splittings of isolated carbon and lead atoms. In the case of the
carbon atom, we investigate the differences between the inclusion of spin-orbit
in its realistic and effective spherically symmetrized forms. The method
exhibits a very good accuracy in describing the small energy splittings,
opening the way for a systematic quantum Monte Carlo studies of spin-orbit
effects in atomic systems.Comment: 7 pages, 0 figure