18 research outputs found

    What is a stem cell?

    Get PDF
    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system.</p

    Experimental Conversion of Liver to Pancreas

    Get PDF
    AbstractBackground: The liver and the pancreas arise from adjacent regions of endoderm in embryonic development. Pdx1 is a key transcription factor that is essential for the development of the pancreas and is not expressed in the liver. The aim of this study was to determine whether a gene overexpression protocol based on Pdx1 would be able to cause conversion of liver to pancreas.Results: We show that a modified form of Pdx1, carrying the VP16 transcriptional activation domain, can cause conversion of liver to pancreas, both in vivo and in vitro. Transgenic Xenopus tadpoles carrying the construct TTR-Xlhbox8-VP16:Elas-GFP were prepared. Xlhbox8 is the Xenopus homolog of Pdx1, the TTR (transthyretin) promoter directs expression to the liver, and the GFP is under the control of an elastase promoter and provides a real-time visible marker of pancreatic differentiation. In the transgenic tadpoles, part or all of the liver is converted to pancreas, containing both exocrine and endocrine cells, while liver differentiation products are lost from the regions converted to pancreas. The timing of events is such that the liver is differentiating by the time Xlhbox8-VP16 is expressed, so we consider this a transdifferentiation event rather than a reprogramming of embryonic development. Furthermore, this same construct will bring about transdifferentiation of human hepatocytes in culture, with formation of both exocrine and endocrine cells.Conclusions: We consider that the conversion of liver to pancreas could be the basis of a new type of therapy for insulin-dependent diabetes. Although expression of the transgene is transient, once the ectopic pancreas is established, it persists thereafter

    Transformation of jaw muscle satellite cells to cardiomyocytes

    Get PDF
    In the embryo a population of progenitor cells known as the second heart field forms not just parts of the heart but also the jaw muscles of the head. Here we show that it is possible to take skeletal muscle satellite cells from jaw muscles of the adult mouse and to direct their differentiation to become heart muscle cells (cardiomyocytes). This is done by exposing the cells to extracellular factors similar to those which heart progenitors would experience during normal embryonic development. By contrast, cardiac differentiation does not occur at all from satellite cells isolated from trunk and limb muscles, which originate from the somites of the embryo. The cardiomyocytes arising from jaw muscle satellite cells express a range of specific marker proteins, beat spontaneously, display long action potentials with appropriate responses to nifedipine, norepinephrine and carbachol, and show synchronized calcium transients. Our results show the existence of a persistent cardiac developmental competence in satellite cells of the adult jaw muscles, associated with their origin from the second heart field of the embryo, and suggest a possible method of obtaining cardiomyocytes from individual patients without the need for a heart biopsy

    Reprogramming of various cell types to a beta-like state by Pdx1, Ngn3 and MafA

    Get PDF
    The three transcription factors, PDX1, NGN3 and MAFA, are very important in pancreatic development. Overexpression of these three factors can reprogram both pancreatic exocrine cells and SOX9-positive cells of the liver into cells resembling pancreatic beta cells. In this study we investigate whether other cell types can be reprogrammed. Eight cell types are compared and the results are consistent with the idea that reprogramming occurs to a greater degree for developmentally related cells (pancreas, liver) than for other types, such as fibroblasts. Using a line of mouse hepatocyte-derived cells we screened 13 compounds for the ability to increase the yield of reprogrammed cells. Three are active and when used in combination they can increase the yield of insulin-immunopositive cells by a factor of six. These results should contribute to the eventual ability to develop a new cure for diabetes based on the ability to reprogram other cells in the body to a beta cell phenotype

    All-trans retinoic acid suppresses exocrine differentiation and branching morphogenesis in the embryonic pancreas

    Get PDF
    Recent evidence has shown that retinoic acid (RA) signalling is required for early pancreatic development in zebrafish and frog but its role in later development in mammals is less clear cut. In the present study, we determined the effects of RA on the differentiation of the mouse embryonic pancreas. Addition of all-trans retinoic acid (atRA) to embryonic pancreatic cultures induced a number of changes. Branching morphogenesis and exocrine differentiation were suppressed and there was premature formation of endocrine cell clusters (although the total area of Ī² cells was not different in control and atRA-treated buds). We investigated the mechanism of these changes and found that the premature formation of Ī² cells was associated with the early expression of high-level Pdx1 in the endocrine cell clusters. In contrast, the suppressive effect of RA on exocrine differentiation may be due to a combination of two mechanisms (i) up-regulation of the extracellular matrix component laminin and (ii) enhancement of apoptosis. We also demonstrate that addition of fibroblast growth factor (FGF)-10 is able to partially prevent apoptosis and rescue exocrine differentiation and branching morphogenesis in atRA-treated cultures but not in mice lacking the FGF receptor 2-IIIb, suggesting the effects of FGF-10 are mediated through this receptor

    What is a stem cell?

    Get PDF
    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system.</p

    The mysterious mechanism of growth

    Get PDF
    corecore