35 research outputs found

    Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling

    Get PDF
    Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. In this study, we have used genome-wide expression profiling to categorise synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas (MFHs). Following hierarchical clustering analysis of the expression data, the best match between tumour clusters and conventional diagnosis was observed for synovial sarcomas. Eight of nine synovial sarcomas examined formed a cluster that was characterised by higher expression of a set of 48 genes. In contrast, sarcomas conventionally classified as leiomyosarcomas and MFHs did not match the clusters defined by hierarchical clustering analysis. One major cluster contained a mixture of both leiomyosarcomas and MFHs and was defined by the lower expression of a set of 202 genes. A cluster containing a subgroup of MFHs was also detected. These results may have implications for the classification of soft tissue sarcomas, and are consistent with the view that sarcomas conventionally defined as MFHs do not represent a separate diagnostic category. (C) 2003 Cancer Research UK

    SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes

    Get PDF
    Contains fulltext : 94049.pdf (publisher's version ) (Open Access

    SYT-SSX is critical for cyclin D1 expression in synovial sarcoma cells: A gain of function of the t(X;18)(p11.2;q11.2) translocation

    No full text
    The SYT-SSX fusion gene has been implicated in the malignant tumor cell growth of synovial sarcoma, but the underlying molecular mechanisms are still poorly understood. Here we demonstrate that SYT-SSX is critical for the protein level of cyclin D1 in synovial sarcoma cells. Antisense oligonucleotides to SYT-SSX mRNA rapidly and drastically decreased cyclin D1 and subsequently inhibited cell growth. This effect is specific for SYT-SSX, without involving the wild-type genes SYT or SSX. The decrease in cyclin D1 expression, which occurred shortly after inhibition of SYT-SSX expression, was found to be primarily dependent on an increased degradation of the cyclin D1 protein, as assessed by pulse-chase experiments using [S-35]methionine. Furthermore, transfection of mouse fibroblasts with SYT-SSX cDNA increased the stability of cyclin D1. Because treatment with a proteasome inhibitor restored cyclin D1 expression, it seems like SYT-SSX interferes with ubiquitin-dependent degradation of cyclin D1. However, SYT-SSX-regulated cyclin D1 expression was proven to be independent of the glycogen synthetase kinase-3beta pathway. Taken together, our study provides evidence that SYT-SSX stabilizes cyclin D1 and is critical for cyclin D1 expression in synovial sarcoma cells. SYT-SSX-dependent expression of cyclin D1 may be an important mechanism in the development and progression of synovial sarcoma and also raises the possibility for targeted therapy

    Co-existence of SYT-SSX1 and SYT-SSX2 fusions in synovial sarcomas

    No full text
    The chromosomal translocation t(X;18)(p11.2;q11.2) is tightly linked to the tumorigenesis of synovial sarcoma. Through this translation the SYT gene on chromosome 18 is fused with a testis/cancer antigen gene on the X chromosome, generating either a SYT-SSX1, SYT-SSX2, or less often a SYT-SSX4 fusion gene. It has been anticipated that the individual synovial sarcoma carries only one of these variants, however, in this study we demonstrated that SYT-SSX1 and SYT-SSX2 coexist in a significant proportion of the cases. From 121 SYT-SSX positive primary tumors, co-expression of SYT-SSX1 and SYT-SSX2 was seen in 12 cases (10%), which were characterized in further detail both at the RNA, DNA and chromosomal level. In all 12 cases the SYT-SSX1 and SYT-SSX2 fusions resulted in identical SYT-SSX fusion transcripts. However, at the genomic level the translocations were different, and most likely occurred between variable intronic sites in the target genes. By interphase FISH analyses of 10 cases SYT-SSX2 translocations were found to be the most abundant in all but one of the cases, in which SYT-SSX1 was predominating. The findings reveal a new heterogenous feature of synovial sarcoma, accounting for approximately 10% of all cases, which may shed light on the molecular genetic mechanisms behind translocations in general, and on the etiology of synovial sarcoma in particular

    The SYT-SSX1 fusion type of synovial sarcoma is associated with increased expression of cyclin A and D1. A link between t(X;18) (p11.2; q11.2) and the cell cycle machinery

    No full text
    The SYT-SSX1 fusion type of synovial sarcoma is associated with increased expression of cyclin A and D1. A link between t(X;18)(p11. 2; q11.2) and the cell cycle machinery. A recent large multi-centre study convincingly confirmed previous observations that the SYT-SSX1 fusion type, compared to SYT-SSX2, of synovial sarcoma is associated with a worse clinical outcome. Apart from the clinical impact, this fact also suggests (1) that the SYT-SSX fusion gene may influence molecular mechanisms involved in tumour growth and progression; and (2) that the SYT-SSX1 fusion type has a stronger influence on these mechanisms than SYT-SSX2. The nature of the underlying mechanisms is, however, still unknown. In this study we made use of the SYT-SSX1 vs SYT-SSX2 concept to investigate whether major, tumour relevant, and growth regulatory proteins (eg cyclins and cyclin-dependent kinases) may be involved. Using Western blotting analysis on 74 fresh, fusion variant-typed, tumour samples from localized synovial sarcoma, we found a significant correlation between SYT-SSX1 and high expression of cyclin A (P=0.003) and D1 (P=0.025). Our data suggest that SYT-SSX may influence the cell cycle machinery, and that the more aggressive phenotype of the SYT-SSX1 variant is due to an accelerated tumour cell proliferation

    Clinical impact of molecular and cytogenetic findings in synovial sarcoma

    No full text
    Synovial sarcoma is an aggressive soft-tissue tumor that accounts for up to 10% of soft-tissue sarcomas. Cytogenetically, synovial sarcoma is characterized by the t(X;18)(p11;q11), found in more than 95% of the tumors. This translocation results in rearrangements of the SYT gene in 18q11 and one of the SSX1, SSX2, or SSX4 genes in Xp11, creating a SYT/SSX1, SYT/SSX2, or SYT/SSX4 chimeric gene. It has been shown that patients with SYT/SSX1 fusion genes have a shorter metastasis-free survival than do patients with SYT/SSX2. Previous studies have also suggested that clonal evolution may be associated with disease progression. In the present study, RT-PCR analysis showed that all 64 examined synovial sarcomas from 54 patients had SYT-SSX chimeric genes. SYT/SSX1 was found in 40 tumors from 33 patients, SYT/SSX2 in 23 tumors from 20 patients, and SYT/SSX4 in one case. Two patients had variant SYT/SSX2 transcripts, with 57 bp and 141 bp inserts, respectively, between the known SYT and SSX2 sequences. Patients with tumors with SYT/SSX1 fusions had a higher risk of developing metastases compared to those with SYT/SSX2 fusions (P = 0.01). The reciprocal transcripts SSX1/SYT and SSX2/SYT were detected using nested PCR in 11 of the 40 samples with SYT/SSX1 and 5 of the 23 samples with SYT/SSX2, respectively. Among 20 blood samples, SYT/SSX1 and SYT/SSX2 were detected in one sample each. The t(X;18), or variants thereof, was found cytogenetically in all patients but three. Among 32 primary tumors, the t(X;18) or a variant translocation was the sole anomaly in 10. In contrast, of the seven metastatic lesions that were investigated prior to radiotherapy, only one had a t(X;18) as the sole anomaly; all other tumors displayed complex karyotypes. Cytogenetic complexity in primary tumors was, however, not associated with the development of metastases. Tumors with SYT/SSX2 less often (4/12 vs. 7/15) showed complex karyotypes than did tumors with SYT/SSX1, but the difference was not significant. Combining cytogenetic complexity and transcript data, we found that the subgroup of patients with tumors showing simple karyotypes and SYT/SSX2 fusion had the best clinical outcome (2/8 patients developed metastases), and those with tumors showing complex karyotypes together with SYT/SSX1 fusion the worst (6/7 patients developed metastases). This corresponded to 5-year metastasis-free survival rates of 0.58 and 0.0, respectively (P = 0.02)
    corecore