5 research outputs found

    Fusion of morphological data obtained by coronary computed tomography angiography with quantitative echocardiographic data on regional myocardial function

    Get PDF
    Background: Three-dimensional (3D) fusion of morphological data obtained by coronary computed tomography angiography (CCTA) with functional data from resting and stress echocardiography could potentially provide additional information compared to examination results analyzed separately and increase the diagnostic and prognostic value of non-invasive imaging in patients with suspected coronary artery disease (CAD). Using vendor-independent software developed in our institution, we aimed to assess the feasibility and reproducibility of 3D fusion of morphological CCTA data with echocardiographic data regarding regional myocardial function. Methods: Thirty patients with suspected CAD underwent CCTA and resting transthoracic echocardiography. From CCTA we obtained 3D reconstructions of coronary arteries and left ventricle (LV). Offline speckle-tracking analysis of the echocardiographic images provided parametric maps depicting myocardial longitudinal strain in 17 segments of the LV. Using our software, 3 independent investigators fused echocardiographic maps with CCTA reconstruc­tions in all patients. Based on the obtained fused models, each segment of the LV was assigned to one of the major coronary artery branches. Results: Mean time necessary for data fusion was 65 ± 7 s. Complete agreement between independent investigators in assignment of LV segments to coronary branches was obtained in 94% of the segments. The average coefficient of agreement (kappa) between the investigators was 0.950 and the intra-class correlation coefficient was 0.9329 (95% CI 0.9227–0.9420). Conclusions: Three-dimensional fusion of morphological CCTA data with quantitative echocardiographic data on regional myocardial function is feasible and allows highly repro­ducible assignment of myocardial segments to coronary artery branches

    Characterisation of the ionic products arising from electron photodetachment of simple dicarboxylate dianions

    Get PDF
    Much of what we currently understand about the structure and energetics of multiply charged anions in the gas phase is derived from the measurement of photoelectron spectra of simple dicarboxylate dianions. Here we have employed a modified linear ion-trap mass spectrometer to undertake complementary investigations of the ionic products resulting from laser-initiated electron photodetachment of two model dianions. Electron photodetachment (ePD) of the \[M-2H](2-) dianions formed from glutaric and adipic acid were found to result in a significant loss of ion signal overall, which is consistent with photoelectron studies that report the emission of slow secondary electrons (Xing et al., 2010 \[201). The ePD mass spectra reveal no signals corresponding to the intact \[M-2H](center dot-) radical anions, but rather \[M-2H-CO2](center dot-) ions are identified as the only abundant ionic products indicating that spontaneous decarboxylation follows ejection of the first electron. Interestingly however, investigations of the structure and energetics of the \[M-2H-CO2](center dot-) photoproducts by ion-molecule reaction and electronic structure calculation indicate that (i) these ions are stable with respect to secondary electron detachment and (ii) most of the ion population retains a distonic radical anion structure where the radical remains localised at the position of the departed carboxylate moiety. These observations lead to the conclusion that the mechanism for loss of ion signal involves unimolecular rearrangement reactions of the nascent \[M-2H](center dot-) carbonyloxyl radical anions that compete favourably with direct decarboxylation. Several possible rearrangement pathways that facilitate electron detachment from the radical anion are identified and are computed to be energetically accessible. Such pathways provide an explanation for prior observations of slow secondary electron features in the photoelectron spectra of the same dicaboxylate dianions. (C) 2013 Elsevier B.V. All rights reserved

    Formation and Decomposition of Chemically Activated and Stabilized Hydrazine

    No full text
    corecore