101 research outputs found

    Optical study of superconducting Ga-rich layers in silicon

    Full text link
    We performed phase-sensitive terahertz (0.12 - 1.2 THz) transmission measurements of Ga-enriched layers in silicon. Below the superconducting transition, T_{c} = 6.7 K, we find clear signatures of the formation of a superconducting condensate and of the opening of an energy gap in the optical spectra. The London penetration depth, \lambda(T), and the condensate density, n_{s} = \lambda^{2} 0)/\lambda^{2}(T), as functions of temperature demonstrate behavior, typical for conventional superconductors with \lambda(0) = 1.8 \mu m. The terahertz spectra can be well described within the framework of Eliashberg theory with strong electron-phonon coupling: the zero-temperature energy gap is 2\Delta(0) = 2.64 meV and 2\Delta(0)/k_{B}T_{c} = 4.6 \pm 0.1, consistent with the amorphous state of Ga. At temperatures just above T_{c}, the optical spectra demonstrate Drude behavior.Comment: 5 pages, 4 figure

    Ti-Al composite wires with high specific strength

    Get PDF
    An alternative deformation technique was applied to a composite made of titanium and an aluminium alloy in order to achieve severe plastic deformation. This involves accumulative swaging and bundling. Furthermore, it allows uniform deformation of a composite material while producing a wire which can be further used easily. Detailed analysis concerning the control of the deformation process, mesostructural and microstructural features and tensile testing was carried out on the as produced wires. A strong grain refinement to a grain size of 250–500 nm accompanied by a decrease in h111i fibre texture component and a change from low angle to high angle grain boundary characteristics is observed in the Al alloy. A strong increase in the mechanical properties in terms of ultimate tensile strength ranging from 600 to 930 MPa being equivalent to a specific strength of up to 223 MPa/g/cm3 was achieved

    The accommodation coefficient of water molecules on ice -cirrus cloud studies at the AIDA simulation chamber

    Get PDF
    Cirrus clouds and their impact on the Earth's radiative budget are subjects of current research. The processes governing the growth of cirrus ice particles are central to the radiative properties of cirrus clouds. At temperatures relevant to cirrus clouds, the growth of ice crystals smaller than a few microns in size is strongly influenced by the accommodation coefficient of water molecules on ice, αice, making this parameter relevant for cirrus cloud modeling. However, the experimentally determined magnitude of αice for cirrus temperatures is afflicted with uncertainties of almost three orders of magnitude, and values for αice derived from cirrus cloud data lack significance so far. This has motivated dedicated experiments at the cloud chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) to determine αice in the cirrus-relevant temperature interval between 190 K and 235 K under realistic cirrus ice particle growth conditions. The experimental data sets have been evaluated independently with two model approaches: the first relying on the newly developed model SIGMA (Simple Ice Growth Model for determining Alpha), the second one on an established model, ACPIM (Aerosol-Cloud-Precipitation Interaction Model). Within both approaches a careful uncertainty analysis of the obtained αice values has been carried out for each AIDA experiment. The results show no significant dependence of αice on temperature between 190 K and 235 K. In addition, we find no evidence for a dependence of αice on ice particle size or on water vapor supersaturation for ice particles smaller than 20 μm and supersaturations of up to 70%. The temperature-averaged and combined result from both models is αice = 0.7−0.5+0.3, which implies that αice may only exert a minor impact on cirrus clouds and their characteristics when compared to the assumption of αice =1. Impact on prior calculations of cirrus cloud properties, e.g., in climate models, with αice typically chosen in the range 0.2–1 is thus expected to be negligible. In any case, we provide a well-constrained αice which future cirrus model studies can rely on

    Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals - cloud chamber measurements in the context of contrail and cirrus microphys

    Get PDF
    The article presents the laser scattering and depolarisation instrument SIMONE that is installed at the large aerosol and cloud chamber facility AIDA of the Karlsruhe Institute of Technology. SIMONE uses a 488 nm cw laser to probe simulated atmospheric clouds by measuring the scattered light from the 1.8° and 178.2° directions. At 178.2°, the scattered light is analysed for the linear polarisation state to deduce the particle linear depolarisation ratio δp which is a common measurement parameter of atmospheric lidar applications. The optical setup and the mathematical formalism of the depolarisation detection concept are given. SIMONE depolarisation measurements in spheroidal hematite aerosol and supercooled liquid clouds are used to validate the instrument. SIMONE data from a series of AIDA ice nucleation experiments at temperatures between 195 and 225 K were analysed in terms of the impact of the ice particle microphysics on δp. We found strong depolarisation values of up to 0.4 in case of small growing and sublimating ice particles with volume equivalent diameters of only a few micrometers. Modelling runs with the T-matrix method showed that the measured depolarisation ratios can be accurately reproduced assuming spheroidal and cylindrical particles with a size distribution that has been constrained by IR extinction spectroscopy. Based on the T-matrix modelling runs, we demonstrate that in case of small ice crystals the SIMONE depolarisation results are representative for the lidar depolarisation ratio which is measured at exact backscattering direction of 180°. The relevance of our results for the interpretation of recent lidar observations in cirrus and contrails is discussed. In view of our results, the high depolarisation ratios observed by the spaceborne lidar CALIOP in the tropical upper troposphere might be a hint for the presence of small (sublimating) ice particles in the outflows of deep convective systems

    The impact of heavy Ga doping on superconductivity in germanium

    No full text
    We report new experimental results on how superconductivity in gallium-doped germanium (Ge:Ga) is influenced by hole concentration and microstructure. Ion implantation and subsequent flash-lamp annealing at various temperatures have been utilized to prepare highly p-doped thin films consisting of nanocrystalline and epitaxially grown sublayers with Ga-peak concentrations of up to 8 at.%. Successive structural investigations were carried out by means of Rutherford-backscattering spectrometry in combination with ion channelling, secondaryion-mass spectrometry, and high-resolution cross-sectional transmission electron microscopy. Hole densities of 1.8·10²⁰ to 5.3·10²⁰ cm⁻³ (0.4 to 1.2 at.%) were estimated via Hall-effect measurements revealing that only a fraction of the incorporated gallium has been activated electrically to generate free charge carriers. The coincidence of a sufficiently high hole and Ga concentration is required for the formation of a superconducting condensate. Our data reflect a critical hole concentration of around 0.4 at.%. Higher concentrations lead to an increase of Tc from 0.24 to 0.43 K as characterized by electrical-transport measurements. A short mean-free path indicates superconductivity in the dirty limit. In addition, small critical-current densities of max. 20 kA/m² point to a large impact of the microstructure

    An Artificial SEI Layer Based on an Inorganic Coordination Polymer with Self-Healing Ability for Long-Lived Rechargeable Lithium-Metal Batteries

    Get PDF
    Upon immersion of a lithium (Li) anode into a diluted 0.05 to 0.20 M dimethoxyethane solution of the phosphoric-acid derivative (CF3_{3}CH2_{2}O)2_{2}P(O)OH (HBFEP), an artificial solid-electrolyte interphase (SEI) is generated on the Li-metal surface. Hence, HBFEP reacts on the surface to the corresponding Li salt (LiBFEP), which is a Li-ion conducting inorganic coordination polymer. This film exhibits – due to the reversibly breaking ionic bonds – self-healing ability upon cycling-induced volume expansion of Li. The presence of LiBFEP as the major component in the artificial SEI is proven by ATR-IR and XPS measurements. SEM characterization of HBFEP-treated Li samples reveals porous layers on top of the Li surface with at least 3 μm thickness. Li−Li symmetrical cells with HBFEP-modified Li electrodes show a three- to almost fourfold cycle-lifetime increase at 0.1 mA cm2^{-2} in a demanding model electrolyte that facilitates fast battery failure (1 M LiOTf in TEGDME). Hence, the LiBFEP-enriched layer apparently acts as a Li-ion conducting protection barrier between Li and the electrolyte, enhancing the rechargeability of Li electrodes

    Local texture measurements with high-energy synchrotron radiation on NiAl deformed in torsion

    Get PDF
    Plastic deformation leads to crystallographic preferred orientations (texture) of the grains in a polycrystalline sample. Therefore, the study of these textures gives informations about the slip systems activated during the deformation. In this study the deformation of polycrystalline NiAl was done by torsion under confining pressure leading to crack-free samples with a well-defined strain gradient. NiAl, an ordered intermetallic alloy with B2 structure, is a potential material candidate for high-temperature applications. Polycrystalline NiAl cylindrical samples with two different initial textures were deformed in torsion tests at 1000 K and 1273 K, respectively, in a Paterson-type rock deformation machine [1] under 400 MPa argon confining pressure. The diameter and height of the samples were 10 mm. The applied torsion leads to a simple shear in the tangential direction in a plane normal to the torsion axis. The shear strain and the shear strain rate in the samples increase linearly from zero at the torsion axis to a maximum ( ) at the sample edge. To investigate the local textures between the torsion axis and the edge, small pins with a diameter of 1 mm were prepared in the radial direction for each of the four deformed samples Quantitative texture measurements were performed with high-energy (100 keV) synchrotron radiation at the beamline BW5 [2], The incident monochromatic beam was defined by a slit system to 1 mm x 2 mm. The small pins were mounted in the Eulerian cradle parallel to the rotation axis ω. An image plate detector was positioned perpendicularly to the diffracted beam at a distance from the sample of about 1.3 m. Thus, the Debye-Scherrer rings with the indices (100), The texture was measured as a function of the shear strain at five different positions between γ = 0 and 3. The samples deformed at 1273 K showed a poor grain statistics due to a large grain size. The corresponding pole figures are not shown here. The torsion deformation at 1000 K leads to much smaller grains. The corresponding (100) pole figures are shown for γ = 1.5; 2.3 and 3 and two different initial texture
    corecore