14 research outputs found

    No apparent transmission of livestock-associated methicillin-resistant Staphylococcus aureus CC398 in a survey of staff at a regional Danish hospital

    Get PDF
    Abstract Background In recent years, livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) multi locus sequence type CC398 has spread widely in the livestock production in Europe. The rates of LA-MRSA in hospitals have been found to be largely determined by contact to and density of livestock in the area. Methods This is a cross sectional study of the prevalence of LA-MRSA among hospital staff in a Danish hospital situated in a livestock production region. We analysed nasal swabs, air and dust samples for the presence of MRSA using PCR and mass spectrometry. Results Of 1745 employees, 545 (31%) contributed nasal swabs. MRSA was not detected in any participant, nor was it detected in air or dust at the hospital or in houses of employees living on farms. Four percent of the participants had contact to pigs either directly or through household members. LA-MRSA was detected in two of 26 samples from animal sheds, both of them from pig farms. The participation rate was relatively low, but participants were representative for the source population with regards to animal contact and job titles. Conclusions The study suggests a low point prevalence of LA-MRSA carriage in Danish hospital staff even in regions where livestock production is dense. Should more studies confirm our findings we see no need for additional hospital precautions towards LA-MRSA in Denmark at the moment. We think that our data might reduce potential stigmatization of hospital workers with contact to LA-MRSA positive farms at their work places and in their communities

    Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately half of all human genes use alternative transcription start sites (TSSs) to control mRNA levels and broaden the transcriptional output in healthy tissues. Aberrant expression patterns promoting carcinogenesis, however, may arise from alternative promoter usage.</p> <p>Results</p> <p>By profiling 108 colorectal samples using exon arrays, we identified nine genes (<it>TCF12, OSBPL1A, TRAK1, ANK3, CHEK1, UGP2, LMO7, ACSL5</it>, and <it>SCIN</it>) showing tumor-specific alternative TSS usage in both adenoma and cancer samples relative to normal mucosa. Analysis of independent exon array data sets corroborated these findings. Additionally, we confirmed the observed patterns for selected mRNAs using quantitative real-time reverse-transcription PCR. Interestingly, for some of the genes, the tumor-specific TSS usage was not restricted to colorectal cancer. A comprehensive survey of the nine genes in lung, bladder, liver, prostate, gastric, and brain cancer revealed significantly altered mRNA isoform ratios for <it>CHEK1, OSBPL1A</it>, and <it>TCF12 </it>in a subset of these cancer types.</p> <p>To identify the mechanism responsible for the shift in alternative TSS usage, we antagonized the Wnt-signaling pathway in DLD1 and Ls174T colorectal cancer cell lines, which remarkably led to a shift in the preferred TSS for both <it>OSBPL1A </it>and <it>TRAK1</it>. This indicated a regulatory role of the Wnt pathway in selecting TSS, possibly also involving TP53 and SOX9, as their transcription binding sites were enriched in the promoters of the tumor preferred isoforms together with their mRNA levels being increased in tumor samples.</p> <p>Finally, to evaluate the prognostic impact of the altered TSS usage, immunohistochemistry was used to show deregulation of the total protein levels of both TCF12 and OSBPL1A, corresponding to the mRNA levels observed. Furthermore, the level of nuclear TCF12 had a significant correlation to progression free survival in a cohort of 248 stage II colorectal cancer samples.</p> <p>Conclusions</p> <p>Alternative TSS usage in colorectal adenoma and cancer samples has been shown for nine genes, and <it>OSBPL1A </it>and <it>TRAK1 </it>were found to be regulated <it>in vitro </it>by Wnt signaling. TCF12 protein expression was upregulated in cancer samples and correlated with progression free survival.</p

    Test-Retest Reliability and Agreement of Single Pulse Transcranial Magnetic Stimulation (TMS) for Measuring Activity in Motor Cortex in Patients With Acute Ischemic Stroke

    No full text
    Background: Transcranial magnetic stimulation (TMS) is often used to examine neurophysiology. We aimed to investigate the inter-rater reliability and agreement of single pulse TMS in hospitalised acute ischemic stroke patients. Methods: Thirty-one patients with first-time acute ischemic stroke (median age 72 (IQR 64-75), 35% females) underwent TMS motor threshold (MT) assessment in 4 muscles bilaterally, conducted by 1 of 2 physiotherapists. Test-retest reliability was evaluated using a two-way random effects model (2,1) absolute agreement-type Interclass Correlation Coefficient (ICC). Standard Error of Measurement (SEM) and Smallest Detectable Change (SDC) were used to evaluate agreement. Results: Reliability, SEM, and SDC of TMS was found to be moderate in right opponens pollicis (0.78 [CI 95% 0.55-0.89], SEM: 4.51, SDC: 12.51), good in right vastus medialis and tibial anterior (0.88 [CI 95% 0.72-0.96], SEM: 2.89, SDC: 8.01 and 0.88 [CI 95% 0.76-0.94], SEM: 2.88, SDC: 7.98 respectively), and excellent in right and left biceps brachii (0.98 [CI 95% 0.96-0.99], SEM: 1.79 SDC: 4.96, and 0.94 [CI 95% 0.89-0.97], SEM: 2.17 SDC: 6.01), opponens pollicis (0.92 [CI 95% 0.83-0.96], SEM: 2.68 SDC: 8.26, vastus medialis (0.92 [CI 95% 0.84-0.96], SEM: 2.87 SDC: 7.95), and tibial anterior (0.93 [CI 95% 0.86-0.96], SEM: 2.51 SDC: 6.95). Conclusion: The TMS demonstrated moderate to excellent inter-rater reliability confirming the ability of these measures to reliably discriminate between individuals in the current study sample. Improvements of less than 4.96 to 12.51 could be a result of measurement error and may therefore not be considered a true change

    Progressive resistance training compared to neuromuscular exercise in patients with hip osteoarthritis and the additive effect of exercise booster sessions: Protocol for a multicentre cluster randomised controlled trial (The Hip Booster Trial)

    No full text
    Introduction The primary aim of this randomised controlled trial is to investigate the effectiveness of 3 months of progressive resistance training (PRT) compared to neuromuscular exercise (NEMEX) on functional performance in patients with hip osteoarthritis (OA). Secondary aims are to investigate the effectiveness of exercise booster sessions (EBS) in prolonging the effects of the initial exercise interventions as well as to investigate the cost-effectiveness of PRT, NEMEX and EBS at 12-month follow-up. Methods and analysis This multicentre cluster randomised controlled trial will be conducted at hospitals and physiotherapy clinics across Denmark. A total of 160 participants with clinically diagnosed hip OA will be recruited. Participants will be cluster randomised to a 3-month intervention of either PRT or NEMEX and to receive EBS or not, resulting in four treatment arms. The primary outcome is change in functional performance, measured by the 30 s chair stand test at 3 months for the primary comparison and at 12 months for the EBS comparisons. Secondary outcomes include changes in 40 m fast-paced walk test, 9-step timed stair climb test, leg extensor muscle power and maximal strength, Hip disability and Osteoarthritis Outcome Score subscales, EuroQol Group 5-dimension, global perceived effect, physical activity and pain. Outcomes are measured at baseline, after the initial 3 months of intervention, and at 6-month, 9-month and 12-month follow-up. An intention-To-Treat approach will be used for analysing changes in the primary and secondary outcome measures. Ethics and dissemination The trial has been approved by the Central Denmark Region Committee on Biomedical Research Ethics (Journal No 1-10-72-267-20) and registered at the Danish Data Protection Agency (Journal No 1-16-02-11-21). Results will be published in international peer-reviewed scientific journals. Trial registration number NCT04714047
    corecore