14 research outputs found
De Iubilato
Praca jubileuszowa została poświęcona Profesorowi Dariuszowi Góreckiemu, wybitnemu znawcy prawa konstytucyjnego w Polsce oraz zagranicznym rozwiązaniom ustrojowym, w siedemdziesiątą rocznicę urodzin.Udostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00
Spectral and Kinetic Properties of Radicals Derived from Oxidation of Quinoxalin-2-One and Its Methyl Derivative
The kinetics and spectral characteristics of the transients formed in the reactions of •OH and •N3 with quinoxalin-2(1H)-one (Q), its methyl derivative, 3-methylquinoxalin-2(1H)-one (3-MeQ) and pyrazin-2-one (Pyr) were studied by pulse radiolysis in aqueous solutions at pH 7. The transient absorption spectra recorded in the reactions of •OH with Q and 3-MeQ consisted of an absorption band with λmax = 470 nm assigned to the OH-adducts on the benzene ring, and a second band with λmax = 390 nm (for Q) and 370 nm (for 3-MeQ) assigned, inter alia, to the N-centered radicals on a pyrazin-2-one ring. The rate constants of the reactions of •OH with Q and 3-MeQ were found to be in the interval (5.9–9.7) × 109 M–1·s–1 and were assigned to their addition to benzene and pyrazin-2-one rings and H-abstraction from the pyrazin-2-one nitrogen. In turn, the transient absorption spectrum observed in the reaction of •N3 exhibits an absorption band with λmax = 350 nm. This absorption was assigned to the N-centered radical on the Pyr ring formed after deprotonation of the respective radical cation resulting from one-electron oxidation of 3-MeQ. The rate constant of the reaction of •N3 with 3 MeQ was found to be (6.0 ± 0.5) × 109 M–1·s–1. Oxidation of 3-MeQ by •N3 and Pyr by •OH and •N3 confirms earlier spectral assignments. With the rate constant of the •OH radical with Pyr (k = 9.2 ± 0.2) × 109 M–1·s‒1, a primary distribution of the •OH attack was estimated nearly equal between benzene and pyrazin-2-one rings
Radiation Induced One-Electron Oxidation of 2-Thiouracil in Aqueous Solutions
Oxidative damage to 2-thiouracil (2-TU) by hydroxyl (•OH) and azide (●N3) radicals produces various primary reactive intermediates. Their optical absorption spectra and kinetic characteristics were studied by pulse radiolysis with UV-vis spectrophotometric and conductivity detection and by time-dependent density functional theory (TD-DFT) method. The transient absorption spectra recorded in the reactions of •OH with 2-TU depend on the concentration of 2-TU, however, only slightly on pH. At low concentrations, they are characterized by a broad absorption band with a weakly pronounced maxima located at λ = 325, 340 and 385 nm, whereas for high concentrations, they are dominated by an absorption band with λmax ≈ 425 nm. Based on calculations using TD-DFT method, the transient absorption spectra at low concentration of 2-TU were assigned to the ●OH-adducts to the double bond at C5 and C6 carbon atoms (3●, 4●) and 2c-3e bonded ●OH adduct to sulfur atom (1…●OH) and at high concentration of 2-TU also to the dimeric 2c-3e S-S-bonded radical in neutral form (2●). The dimeric radical (2●) is formed in the reaction of thiyl-type radical (6●) with 2-TU and both radicals are in an equilibrium with Keq = 4.2 × 103 M−1. Similar equilibrium (with Keq = 4.3 × 103 M−1) was found for pH above the pKa of 2-TU which involves admittedly the same radical (6●) but with the dimeric 2c-3e S-S bonded radical in anionic form (2●−). In turn, ●N3-induced oxidation of 2-TU occurs via radical cation with maximum spin location on the sulfur atom which subsequently undergoes deprotonation at N1 atom leading again to thiyl-type radical (6●). This radical is a direct precursor of dimeric radical (2●)
Spectral and kinetic properties of radicals derived from oxidation of quinoxalin-2-one and its methyl derivative
© 2014 by the authors licensee MDPI Basel Switzerland.The kinetics and spectral characteristics of the transients formed in the reactions of • OH and •N3 with quinoxalin-2(1H)-one (Q), its methyl derivative, 3-methylquinoxalin- 2(1H)-one (3-MeQ) and pyrazin-2-one (Pyr) were studied by pulse radiolysis in aqueous solutions at pH 7. The transient absorption spectra recorded in the reactions of •OH with Q and 3-MeQ consisted of an absorption band with eλ max = 470 nm assigned to the OH-adducts on the benzene ring, and a second band with eλ max = 390 nm (for Q) and 370 nm (for 3-MeQ) assigned, inter alia, to the N-centered radicals on a pyrazin-2-one ring. The rate constants of the reactions of •OH with Q and 3-MeQ were found to be in the interval (5.9-9.7) × 109M-1•s-1 and were assigned to their addition to benzene and pyrazin-2-one rings and H-abstraction from the pyrazin-2-one nitrogen. In turn, the transient absorption spectrum observed in the reaction of •N3 exhibits an absorption ba
Radiation-Induced Oxidation Reactions of 2-Selenouracil in Aqueous Solutions: Comparison with Sulfur Analog of Uracil
One-electron oxidation of 2-selenouracil (2-SeU) by hydroxyl (●OH) and azide (●N3) radicals leads to various primary reactive intermediates. Their optical absorption spectra and kinetic characteristics were studied by pulse radiolysis with UV-vis spectrophotometric and conductivity detection and by the density functional theory (DFT) method. The transient absorption spectra recorded in the reactions of ●OH with 2-SeU are dominated by an absorption band with an λmax = 440 nm, the intensity of which depends on the concentration of 2-SeU and pH. Based on the combination of conductometric and DFT studies, the transient absorption band observed both at low and high concentrations of 2-SeU was assigned to the dimeric 2c-3e Se-Se-bonded radical in neutral form (2●). The dimeric radical (2●) is formed in the reaction of a selenyl-type radical (6●) with 2-SeU, and both radicals are in equilibrium with Keq = 1.3 × 104 M−1 at pH 4 (below the pKa of 2-SeU). Similar equilibrium with Keq = 4.4 × 103 M−1 was determined for pH 10 (above the pKa of 2-SeU), which admittedly involves the same radical (6●) but with a dimeric 2c-3e Se-Se bonded radical in anionic form (2●−). In turn, at the lowest concentration of 2-SeU (0.05 mM) and pH 10, the transient absorption spectrum is dominated by an absorption band with an λmax = 390 nm, which was assigned to the ●OH adduct to the double bond at C5 carbon atom (3●) based on DFT calculations. Similar spectral and kinetic features were also observed during the ●N3-induced oxidation of 2-SeU. In principle, our results mostly revealed similarities in one-electron oxidation pathways of 2-SeU and 2-thiouracil (2-TU). The major difference concerns the stability of dimeric radicals with a 2c-3e chalcogen-chalcogen bond in favor of 2-SeU
Radical Ions of 3-Styryl-quinoxalin-2-one derivatives studied by pulse radiolysis in organic solvents
The absorption-spectral and kinetic behaviors of radical ions and neutral hydrogenated radicals of seven 3-styryl-quinoxalin-2(1 H)-one (3-SQ) derivatives, one without substituents in the styryl moiety, four others with electron-donating (R = -CH3, -OCH3, and -N(CH3)(2)) or electron-withdrawing (R = -OCF3) substituents in the para position in their benzene ring, and remaining two with double methoxy substituents (-OCH3), however, at different positions (meta/para and ortho/meta) have been studied by UV-vis spectrophotometric pulse radiolysis in neat acetonitrile saturated with argon (Ar) and oxygen (O-2) and in 2-propanol saturated with Ar, at room temperature. In acetonitrile solutions, the radical anions (4R-SQ(center dot-)) are characterized by two absorption maxima located at lambda(max) = 470-490 nm and lambda(max) = 510-540 nm, with the respective molar absorption coefficients epsilon(470-490) = 8500-13 100 M-1 cm(-1) and epsilon(510-540) = 6100-10 300 M-1 cm(-1), depending on the substituent (R). All 4R-SQ(center dot-) decay in acetonitrile via first-order kinetics, with the rate constants in the range (1.2-1.5) x 10(6) s(-1). In 2-propanol solutions, they decay predominantly through protonation by the solvent, forming neutral hydrogenated radicals (4R-SQH(center dot)), which are characterized by weak absorption bands with lambda(max) = 480-490 nm. Being oxygen-insensitive, the radical cations (4R-SQ(center dot+)) are characterized by a strong absorption with lambda(max) = 450-630 nm, depending on the substituent (R). They are formed in a charge-transfer reaction between a radical cation derived from acetonitrile (ACN(center dot+)) and substituted 3-styryl-quinoxalin-2-one derivatives (4R-SQ) with a pseudo-first-order rate constant k = (2.7-4.7) x 10(5) s(-1) measured in solutions containing 0.1 mM 4R-3-SQ. The Hammett equation plot gave a very small negative slope (rho = -0.08), indicating a very weak influence of the substituents in the benzene ring on the rate of charge-transfer reaction. The decay of 4R-SQ(center dot+) in Ar-saturated acetonitrile solutions occurs with a pseudo-first-order rate constant k = (1.6-6.2) x 10(4) s(-1) and, in principle, is not affected by the presence of O-2, suggesting charge-spin delocalization over the whole 3-SQ molecule. Most of the radiolytically generated transient spectra are reasonably well-reproduced by semiempirical PM3-ZINDO/S (for 4R-SQ(center dot-)) and density functional theory quantum mechanics calculations employing M06-2x hybrid functional together with the def2-TZVP basis set (for 4R-SQ(center dot+)).FONDECYT
1150567
Universidad de Chile
Polish National Center of Science (NCN) for PRELUDIUM grant
2014/15/N/ST4/02914
US Department of Energy Office of Science, Office of Basic Energy Science
DE-FC02-04ER1553
Biomimetic Ketone Reduction by Disulfide Radical Anion
The conversion of ribonucleosides to 2′-deoxyribonucleosides is catalyzed by ribonucleoside reductase enzymes in nature. One of the key steps in this complex radical mechanism is the reduction of the 3′-ketodeoxynucleotide by a pair of cysteine residues, providing the electrons via a disulfide radical anion (RSSR•−) in the active site of the enzyme. In the present study, the bioinspired conversion of ketones to corresponding alcohols was achieved by the intermediacy of disulfide radical anion of cysteine (CysSSCys)•− in water. High concentration of cysteine and pH 10.6 are necessary for high-yielding reactions. The photoinitiated radical chain reaction includes the one-electron reduction of carbonyl moiety by disulfide radical anion, protonation of the resulting ketyl radical anion by water, and H-atom abstraction from CysSH. The (CysSSCys)•− transient species generated by ionizing radiation in aqueous solutions allowed the measurement of kinetic data with ketones by pulse radiolysis. By measuring the rate of the decay of (CysSSCys)•− at λmax = 420 nm at various concentrations of ketones, we found the rate constants of three cyclic ketones to be in the range of 104–105 M−1s−1 at ~22 °C
Radiation- and Photo-Induced Oxidation Pathways of Methionine in Model Peptide Backbone under Anoxic Conditions
Within the reactive oxygen species (ROS) generated by cellular metabolisms, hydroxyl radicals (HO•) play an important role, being the most aggressive towards biomolecules. The reactions of HO• with methionine residues (Met) in peptides and proteins have been intensively studied, but some fundamental aspects remain unsolved. In the present study we examined the biomimetic model made of Ac-Met-OMe, as the simplest model peptide backbone, and of HO• generated by ionizing radiation in aqueous solutions under anoxic conditions. We performed the identification and quantification of transient species by pulse radiolysis and of final products by LC-MS and high-resolution MS/MS after γ-radiolysis. By parallel photochemical experiments, using 3-carboxybenzophenone (CB) triplet with the model peptide, we compared the outcomes in terms of short-lived intermediates and stable product identification. The result is a detailed mechanistic scheme of Met oxidation by HO•, and by CB triplets allowed for assigning transient species to the pathways of products formation
Spectral Probe for Electron Transfer and Addition Reactions of Azide Radicals with Substituted Quinoxalin-2-Ones in Aqueous Solutions
The azide radical (N3●) is one of the most important one-electron oxidants used extensively in radiation chemistry studies involving molecules of biological significance. Generally, it was assumed that N3● reacts in aqueous solutions only by electron transfer. However, there were several reports indicating the possibility of N3● addition in aqueous solutions to organic compounds containing double bonds. The main purpose of this study was to find an experimental approach that allows a clear assignment of the nature of obtained products either to its one-electron oxidation or its addition products. Radiolysis of water provides a convenient source of one-electron oxidizing radicals characterized by a very broad range of reduction potentials. Two inorganic radicals (SO4●−, CO3●−) and Tl2+ ions with the reduction potentials higher, and one radical (SCN)2●− with the reduction potential slightly lower than the reduction potential of N3● were selected as dominant electron-acceptors. Transient absorption spectra formed in their reactions with a series of quinoxalin-2-one derivatives were confronted with absorption spectra formed from reactions of N3● with the same series of compounds. Cases, in which the absorption spectra formed in reactions involving N3● differ from the absorption spectra formed in the reactions involving other one-electron oxidants, strongly indicate that N3● is involved in the other reaction channel such as addition to double bonds. Moreover, it was shown that high-rate constants of reactions of N3● with quinoxalin-2-ones do not ultimately prove that they are electron transfer reactions. The optimized structures of the radical cations (7-R-3-MeQ)●+, radicals (7-R-3-MeQ)● and N3● adducts at the C2 carbon atom in pyrazine moiety and their absorption spectra are reasonably well reproduced by density functional theory quantum mechanics calculations employing the ωB97XD functional combined with the Dunning’s aug-cc-pVTZ correlation-consistent polarized basis sets augmented with diffuse functions
Spectral Probe for Electron Transfer and Addition Reactions of Azide Radicals with Substituted Quinoxalin-2-Ones in Aqueous Solutions
The azide radical (N3●) is one of the most important one-electron oxidants used extensively in radiation chemistry studies involving molecules of biological significance. Generally, it was assumed that N3● reacts in aqueous solutions only by electron transfer. However, there were several reports indicating the possibility of N3● addition in aqueous solutions to organic compounds containing double bonds. The main purpose of this study was to find an experimental approach that allows a clear assignment of the nature of obtained products either to its one-electron oxidation or its addition products. Radiolysis of water provides a convenient source of one-electron oxidizing radicals characterized by a very broad range of reduction potentials. Two inorganic radicals (SO4●−, CO3●−) and Tl2+ ions with the reduction potentials higher, and one radical (SCN)2●− with the reduction potential slightly lower than the reduction potential of N3● were selected as dominant electron-acceptors. Transient absorption spectra formed in their reactions with a series of quinoxalin-2-one derivatives were confronted with absorption spectra formed from reactions of N3● with the same series of compounds. Cases, in which the absorption spectra formed in reactions involving N3● differ from the absorption spectra formed in the reactions involving other one-electron oxidants, strongly indicate that N3● is involved in the other reaction channel such as addition to double bonds. Moreover, it was shown that high-rate constants of reactions of N3● with quinoxalin-2-ones do not ultimately prove that they are electron transfer reactions. The optimized structures of the radical cations (7-R-3-MeQ)●+, radicals (7-R-3-MeQ)● and N3● adducts at the C2 carbon atom in pyrazine moiety and their absorption spectra are reasonably well reproduced by density functional theory quantum mechanics calculations employing the ωB97XD functional combined with the Dunning’s aug-cc-pVTZ correlation-consistent polarized basis sets augmented with diffuse functions