33 research outputs found

    A potential mouse model for the erosive vitreoretinopathy of Wagner disease

    Full text link
    Patients with the very rare eye pathology Wagner disease (OMIM #143200) present with an abnormal (empty) vitreous, retinal detachment and altered electroretinogram (ERG). The disease is progressive and can eventually lead to blindness. No therapy can be offered to date. The genetic basis is the presence of mutations in the VCAN gene, encoding the large extracellular matrix molecule versican, which is a component of the vitreous. All identified mutations map to the canonical splice sites flanking exon 8, resulting in low number of aberrant splice products and a severe increase in two (V2, V3) of the four naturally occurring splice variants. The pathomechanism of Wagner's disease is poorly understood and a mouse model may afford further insight. The hdf -/- mice, named for their initial phenotype of heart defects, carry a null allele for Vcan that leads to embryonic lethality when homozygous, but heterozygote animals are viable. Here we investigated a possible eye phenotype in the heterozygous animals. While the overall morphology of retina and ciliary body appears to be normal, older (17 months) mutant animals show a decrease in ERG signaling profiles affecting the a-, b- and c-waves. This aspect of altered ERG profile demonstrates similarities to the human disease manifestation and underlines the suitability of heterozygous hdf+/- mice as a model for Wagner disease

    Lack of netrin-4 modulates pathologic neovascularization in the eye

    Get PDF
    Netrins are a family of matrix-binding proteins that function as guidance signals. Netrin-4 displays pathologic roles in tumorigenesis and neovascularization. To answer the question whether netrin-4 acts either pro- or anti-angiogenic, angiogenesis in the retina was assessed in Ntn-4−/− mice with oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV), mimicking hypoxia-mediated neovascularization and inflammatory mediated angiogenesis. The basement membrane protein netrin-4 was found to be localised to mature retinal blood vessels. Netrin-4, but not netrin-1 mRNA expression, increased in response to relative hypoxia and recovered to normal levels at the end of blood vessel formation. No changes in the retina were found in normoxic Ntn-4−/− mice. In OIR, Ntn-4−/− mice initially displayed larger avascular areas which recovered faster to revascularization. Ganzfeld electroretinography showed faster recovery of retinal function in Ntn-4−/− mice. Expression of netrin receptors, Unc5H2 (Unc-5 homolog B, C. elegans) and DCC (deleted in colorectal carcinoma), was found in Müller cells and astrocytes. Laser-induced neovascularization in Nnt-4−/− mice did not differ to that in the controls. Our results indicate a role for netrin-4 as an angiogenesis modulating factor in O2-dependent vascular homeostasis while being less important during normal retinal developmental angiogenesis or during inflammatory neovascularization

    Lack of netrin-4 modulates pathologic neovascularization in the eye

    Get PDF
    Netrins are a family of matrix-binding proteins that function as guidance signals. Netrin-4 displays pathologic roles in tumorigenesis and neovascularization. To answer the question whether netrin-4 acts either pro- or anti-angiogenic, angiogenesis in the retina was assessed in Ntn-4−/− mice with oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV), mimicking hypoxia-mediated neovascularization and inflammatory mediated angiogenesis. The basement membrane protein netrin-4 was found to be localised to mature retinal blood vessels. Netrin-4, but not netrin-1 mRNA expression, increased in response to relative hypoxia and recovered to normal levels at the end of blood vessel formation. No changes in the retina were found in normoxic Ntn-4−/− mice. In OIR, Ntn-4−/− mice initially displayed larger avascular areas which recovered faster to revascularization. Ganzfeld electroretinography showed faster recovery of retinal function in Ntn-4−/− mice. Expression of netrin receptors, Unc5H2 (Unc-5 homolog B, C. elegans) and DCC (deleted in colorectal carcinoma), was found in Müller cells and astrocytes. Laser-induced neovascularization in Nnt-4−/− mice did not differ to that in the controls. Our results indicate a role for netrin-4 as an angiogenesis modulating factor in O2-dependent vascular homeostasis while being less important during normal retinal developmental angiogenesis or during inflammatory neovascularization

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development

    Anti-Inflammatory Role of Netrin-4 in Diabetic Retinopathy

    Get PDF
    Diabetic retinopathy is characterized by dysfunction of the retinal vascular network, combined with a persistent low-grade inflammation that leads to vision-threatening complications. Netrin-4 (NTN4) is a laminin-related secreted protein and guidance cue molecule present in the vascular basal membrane and highly expressed in the retina. A number of studies inferred that the angiogenic abilities of NTN4 could contribute to stabilize vascular networks and modulate inflammation. Analyzing human specimens, we show that NTN4 and netrin receptors are upregulated in the diabetic retina. We further evaluated a knock-out model for NTN4 undergoing experimental diabetes induced by streptozotocin. We investigated retina function and immune cells in vivo and demonstrated that NTN4 provides a protective milieu against inflammation in the diabetic retina and prevents cytokine production

    Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation

    Full text link
    PURPOSE: In a spontaneous mutant substrain of C57BL/10 mice, severely affected retinal ribbon-type synapses have been described. The retinopathy was accompanied by a substantial loss in the activities of the second-order neurons. Rod photoreceptor responses were maintained with reduced amplitude, whereas cone activities were absent. This study was conducted to identify the genetic defect underlying this hitherto unknown autosomal recessive cone-rod dysfunction. METHODS: Genome-wide linkage analysis and screening of positional candidate genes were used to identify the causative mutation. Tissue-specific transcriptional activity of the defective gene was determined by Northern blot analysis and RT-PCR approaches. The number of cone photoreceptors was estimated by immunohistochemistry. RESULTS: The mutation was localized to a 275-kb region of chromosome 6. Within this candidate interval, a homozygous frameshift mutation (c.2367insC) was identified in the Cacna2d4 gene of affected animals. This gene codes for an L-type calcium channel auxiliary subunit of the alpha2delta type. The mutation introduces a premature stop codon that truncates one third of the predicted Cacna2d4 protein. A severe reduction in Cacna2d4 transcript levels observed in mutant retinas probably results in the lack of Cacna2d4 protein. The mutation leads to significant loss of rods, whereas the number of cone cells remains unaffected until 6 weeks of age. CONCLUSIONS: The Cacna2d4 mutation underlies a novel channelopathy leading to cone-rod dysfunction in the visual system of mice and provides a new candidate gene for human retinal disorders including night blindness, retinitis pigmentosa, and cone-rod dystrophies

    Individual and temporal variability of the retina after chronic bilateral common carotid artery occlusion (BCCAO).

    Get PDF
    Animal models of disease are an indispensable element in our quest to understand pathophysiology and develop novel therapies. Ex vivo studies have severe limitations, in particular their inability to study individual disease progression over time. In this respect, non-invasive in vivo technologies offer multiple advantages. We here used bilateral common carotid artery occlusion (BCCAO) in mice, an established model for ischemic retinopathy, and performed a multimodal in vivo and ex vivo follow-up. We used scanning laser ophthalmoscopy (SLO), ocular coherence tomography (OCT) and electroretinography (ERG) over 6 weeks followed by ex vivo analyses. BCCAO leads to vascular remodeling with thickening of veins starting at 4 weeks, loss of photoreceptor synapses with concomitant reduced b-waves in the ERG and thinning of the retina. Mononuclear phagocytes showed fluctuation of activity over time. There was large inter-individual variation in the severity of neuronal degeneration and cellular inflammatory responses. Ex vivo analysis confirmed these variable features of vascular remodeling, neurodegeneration and inflammation. In summary, we conclude that multimodal follow-up and subgroup analysis of retinal changes in BCCAO further calls into question the use of ex vivo studies with distinct single end-points. We propose that our approach can foster the understanding of retinal disease as well as the clinical translation of emerging therapeutic strategies

    Lack of netrin-4 modulates pathologic neovascularization in the eye

    Get PDF
    Netrins are a family of matrix-binding proteins that function as guidance signals. Netrin-4 displays pathologic roles in tumorigenesis and neovascularization. To answer the question whether netrin-4 acts either pro-or anti-angiogenic, angiogenesis in the retina was assessed in Ntn-4(-/-) mice with oxygeninduced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV), mimicking hypoxiamediated neovascularization and inflammatory mediated angiogenesis. The basement membrane protein netrin-4 was found to be localised to mature retinal blood vessels. Netrin-4, but not netrin-1 mRNA expression, increased in response to relative hypoxia and recovered to normal levels at the end of blood vessel formation. No changes in the retina were found in normoxic Ntn-4(-/-) mice. In OIR, Ntn-4(-/-) mice initially displayed larger avascular areas which recovered faster to revascularization. Ganzfeld electroretinography showed faster recovery of retinal function in Ntn-4(-/-) mice. Expression of netrin receptors, Unc5H2 (Unc-5 homolog B, C. elegans) and DCC (deleted in colorectal carcinoma), was found in Muller cells and astrocytes. Laser-induced neovascularization in Nnt-4(-/-) mice did not differ to that in the controls. Our results indicate a role for netrin-4 as an angiogenesis modulating factor in O-2-dependent vascular homeostasis while being less important during normal retinal developmental angiogenesis or during inflammatory neovascularization

    Hypertensive retinopathy in a transgenic angiotensin-based model

    No full text
    Severe hypertension destroys eyesight. The RAS (renin-angiotensin system) may contribute to this. This study relied on an established angiotensin, AngII (angiotensin II)-elevated dTGR (double-transgenic rat) model and same-background SD (Sprague-Dawley) rat controls. In dTGRs, plasma levels of AngII were increased. We determined the general retinal phenotype and observed degeneration of ganglion cells that we defined as vascular degeneration. We also inspected relevant gene expression and lastly observed alterations in the outer blood-retinal barrier. We found that both scotopic a-wave and b-wave as well as oscillatory potential amplitude were significantly decreased in dTGRs, compared with SD rat controls. However, the b/a-wave ratio remained unchanged. Fluorescence angiography of the peripheral retina indicated that exudates, or fluorescein leakage, from peripheral vessels were increased in dTGRs compared with controls. Immunohistological analysis of blood vessels in retina whole-mount preparations showed structural alterations in the retina of dTGRs. We then determined the general retinal phenotype. We observed the degeneration of ganglion cells, defined vascular degenerations and finally found differential expression of RAS-related genes and angiogenic genes. We found the expression of both human angiotensinogen and human renin in the hypertensive retina. Although the renin gene expression was not altered, the AngII levels in the retina were increased 4-fold in the dTGR retina compared with that in SD rats, a finding with mechanistic implications. We suggest that alterations in the outer blood-retinal barrier could foster an area of visual-related research based on our findings. Finally, we introduce the dTGR model of retinal disease
    corecore