43 research outputs found

    Investigation of the 19Na via resonance elastic scattering

    Full text link
    The structure of the unbound proton-rich isotope 19Na was studied in resonance elastic scattering of a radioactive 18Ne beam on a proton target using the thick-target inverse-kinematics method. The experiment covered excitation energy range from 0.5 to 2.7 MeV in c.m.s. Only one state of 19Na (the second excited state) was observed. A combined R-matrix and potential-model analysis was performed. The spin and parity assignment of this second excited state was confirmed to be 1/2+. We showthat the position of the 1/2+ state significantly affects the reaction rate through that state but the total reaction rate remains unchanged since the 18Ne(2p,gamma) proceeds mostly via the ground and first excited states in 19Na at stellar temperatures.Comment: 13 pages, 5 figure

    Structure of N-12 using C-11+p resonance scattering

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/The level structure of N-12 has been investigated from 2.2 to 11.0 MeV in excitation energy using a C-11+p resonance interaction with thick targets and inverse kinematics. Excitation functions were fitted using an R-matrix approach. Sixteen levels in N-12 were included in the analysis, several of them are new. Spin-parity assignments, excitation energies and widths are proposed for these levels

    Single and double proton emissions from the O-14+He-4 interaction

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/We observed single and double proton emissions in the O-14+He-4 interaction by the thick target inverse kinematic (TTIK) method at initial energy for O-14 at 32.7 MeV. We found that the protons mainly originate from the resonance excitation of states in Ne-18. The observed states in Ne-18 decay by protons mainly to proton unstable states in F-17. It was found that the decay of a state in Ne-18 at E-ex=8.45 MeV demonstrates the features of a decay by a correlated proton pair. The observed properties of the O-14+He-4 interaction make a previous interpretation for the rate of O-14(He-4, p)F-17 at astrophysical energies suspect. We show how the TTIK method should be modified to obtain the data of astrophysical interest

    Isobaric analog states of neutron-rich nuclei. Doppler shift as a measurement tool for resonance excitation functions

    Full text link
    We present a new approach for the measurement of resonance excitation functions of neutron-rich nuclei using Doppler shift information. Preliminary data from the first application of the method is presented in the spectroscopy studies of 7 He isobaric analog states in 7 Li.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45815/1/10050_2005_Article_506014.pd

    Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΈ острой Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ нСдостаточности Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с COVID-19

    Get PDF
    With a traditional approach to treatment of hypoxemic respiratory failure, it is believed that SpO2 reduction below 88-90% during oxygen therapy requires emergency care including invasive mechanical ventilation. However, the manifestations of hypoxemic respiratory failure in COVID-19 patients have certain features that have led to the change in the traditional respiratory support procedure. The therapeutic goals of respiratory support in this category of patients require clarification.The objective: in patients with COVID-19, to study the relationship of transcutaneous saturation values with clinical indicators that characterize ARF, the state of acid-base balance and blood gas composition.Subjects and methods. A multicenter prospective observational study included 90 COVID-19 patients treated in ICU whose transcutaneous saturation (SpO2) values were below 93% despite treatment. Depending on the degree of impaired oxygenation, patients underwent oxygen therapy through a mask or nasal cannula, high-flow oxygenation or non-invasive ventilation, while it was not always possible to achieve the target values of oxygenation parameters. The patients were divided into the following groups: Group 1 β€’ SpO2 above 93%, Group 2 β€’ SpO2 within 93–90%, Group 3 β€’ SpO2 within 85–89%, Group 4β€’ SpO2 within 80–84%, Group 5 β€’ SpO2 within 75–79%, and Group 6 – below 75%.Results. It was revealed that during ARF management by noninvasive methods, different values of transcutaneous saturation and corresponding changes in the acid-base balance (ABB) and blood gas composition were determined When transcutaneous saturation (SpO2) decreased to 85%, there was a corresponding moderate decrease in PaO2 while no metabolic changes occurred. As a rule, there were no obvious clinical signs of respiratory failure (silent hypoxia). In patients with SpO2 reduction down 80–85%, clinical signs of respiratory failure (dyspnea, tachypnea, agitation) and, as a rule, a moderate increase in PΠ°CO2 with the development of respiratory acidosis and compensatory metabolic alkalosis were noted. When SpO2 decreased down to 75–79%, arterial hypoxemia was usually accompanied by moderate hypercapnia and the development of decompensated mixed acidosis and venous desaturation as well as increased lactate levels. With transcutaneous saturation going below 74%, these changes were even more pronounced and were observed in all patients of this group.Conclusion. The revealed changes are mostly consistent with generally accepted ideas about the relationship between values of transcutaneous saturation and blood gas composition and parameters of blood ABB in the case of ARF. Reduction of transcutaneous saturation down to 85% not accompanied by pronounced clinical signs of respiratory failure (dyspnea, tachypnea, agitation), development of acidosis and venous desaturation, and the elevated lactate level can be regarded as relatively safe.ΠŸΡ€ΠΈ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ ΠΊ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ гипоксСмичСской Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ нСдостаточности считаСтся, Ρ‡Ρ‚ΠΎ сниТСниС SpO2 Π½ΠΈΠΆΠ΅ 88β€’90% Π½Π° Ρ„ΠΎΠ½Π΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΠΉ оксигСнотСрапии Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ экстрСнной ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ, Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ примСнСния ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ искусствСнной вСнтиляции Π»Π΅Π³ΠΊΠΈΡ…. Однако проявлСния гипоксСмичСской Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ нСдостаточности Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с COVID-19 ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ особСнности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ измСнСнию Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° провСдСния рСспираторной ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ. ВСрапСвтичСскиС Ρ†Π΅Π»ΠΈ провСдСния рСспираторной ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… этой ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ уточнСния.ЦСль: Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с COVID-19 ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ взаимосвязь Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ транскутанной сатурации с клиничСскими показатСлями, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΎΡΡ‚Ρ€ΡƒΡŽ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ (ΠžΠ”Π), состояниСм кислотно-основного баланса ΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ состава ΠΊΡ€ΠΎΠ²ΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ ΠΌΠ½ΠΎΠ³ΠΎΡ†Π΅Π½Ρ‚Ρ€ΠΎΠ²ΠΎΠ΅ проспСктивноС Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΎ 90 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с COVID-19, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠΈ Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΈ ΠΈ интСнсивной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ…, нСсмотря Π½Π° Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅, значСния транскутанной сатурации (SpO2) составляли ΠΌΠ΅Π½Π΅Π΅ 93%. Π’ зависимости ΠΎΡ‚ стСпСни Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ оксигСнации ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΎΠΊΡΠΈΠ³Π΅Π½ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΡŽ Ρ‡Π΅Ρ€Π΅Π· маску ΠΈΠ»ΠΈ носовыС канюли, Π²Ρ‹ΡΠΎΠΊΠΎΠΏΠΎΡ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΎΠΊΡΠΈΠ³Π΅Π½Π°Ρ†ΠΈΡŽ ΠΈΠ»ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡƒΡŽ Π²Π΅Π½Ρ‚ΠΈΠ»ΡΡ†ΠΈΡŽ Π»Π΅Π³ΠΊΠΈΡ…, ΠΏΡ€ΠΈ этом Π½Π΅ всСгда ΡƒΠ΄Π°Π²Π°Π»ΠΎΡΡŒ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ оксигСнации. ΠŸΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ ΠžΠ”Π ΠΏΠΎ выявляСмым значСниям SpO2 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: 1-я – SpO2 Π±ΠΎΠ»Π΅Π΅ 93%, 2-я – SpO2 Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 93β€’90%, 3-я – SpO2 Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 85β€’89%, 4-я – SpO2 Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 80β€’84%, 5-я – SpO2 Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 75β€’79% ΠΈ 6-я – SpO2 ΠΌΠ΅Π½Π΅Π΅ 75%.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВыявлСно, Ρ‡Ρ‚ΠΎ Π½Π° Ρ„ΠΎΠ½Π΅ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ ΠžΠ”Π Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ значСния транскутанной сатурации ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΈΠΌ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ измСнСния кислотно-основного состояния (КОБ) ΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ состава ΠΊΡ€ΠΎΠ²ΠΈ. ΠŸΡ€ΠΈ сниТСнии Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ транскутанной сатурации (SpO2) Π΄ΠΎ 85% ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠ΅ сниТСниС PаО2 ΠΏΡ€ΠΈ отсутствии мСтаболичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, отсутствовали ΠΈ явныС клиничСскиС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ нСдостаточности («тихая гипоксия»). Π£ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² со сниТСниСм SpO2 Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 80β€’85% ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ появлСниС клиничСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ нСдостаточности (диспноэ, тахипноэ, аТитация) ΠΈ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ PаБО2 с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Ρ†ΠΈΠ΄ΠΎΠ·Π° ΠΈ компСнсаторного мСтаболичСского Π°Π»ΠΊΠ°Π»ΠΎΠ·Π°. ΠŸΡ€ΠΈ сниТСнии SpO2 Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 75β€’79% Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ гипоксСмия, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»Π°ΡΡŒ ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠΉ Π³ΠΈΠΏΠ΅Ρ€ΠΊΠ°ΠΏΠ½ΠΈΠ΅ΠΉ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ дСкомпСнсированного смСшанного Π°Ρ†ΠΈΠ΄ΠΎΠ·Π° ΠΈ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ дСсатурации, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ уровня Π»Π°ΠΊΡ‚Π°Ρ‚Π°. ΠŸΡ€ΠΈ сниТСнии транскутанной сатурации ΠΌΠ΅Π½Π΅Π΅ 74% эти измСнСния носили Π΅Ρ‰Π΅ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ наблюдались Ρƒ всСх ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π΄Π°Π½Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ВыявлСнныС измСнСния Π² Ρ†Π΅Π»ΠΎΠΌ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с общСпринятыми прСдставлСниями ΠΎ взаимосвязи Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ транскутанной сатурации с Π³Π°Π·ΠΎΠ²Ρ‹ΠΌ составом ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ КОБ ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ ΠžΠ”Π. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ транскутанной сатурации Π΄ΠΎ уровня 85%, Π½Π΅ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰Π΅Π΅ΡΡ появлСниСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… клиничСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ нСдостаточности (диспноэ, тахипноэ, Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅), Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ Π°Ρ†ΠΈΠ΄ΠΎΠ·Π° ΠΈ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ дСсатурации, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ Π»Π°ΠΊΡ‚Π°Ρ‚Π°, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ бСзопасноС

    Probing the heart and mind of the viewer: scientific studies of film and theatre spectators in the Soviet Union, 1917-1936

    Get PDF
    A vast array of research institutes and cultural organizations began to study the viewer of Soviet cinema and theatre in the years following the October Revolution. These investigations called on the techniques of sociology, psychology, and physiology to make Soviet cultural production more β€œefficient” and β€œrational.” Belying the conventional assumption that the cultural revolution of 1928–1932 brought empirical research in aesthetics to an abrupt end, this paper traces the continuation and redefinition of studies of the viewer in the Soviet Union after the β€œGreat Break.” My analysis of the work of the β€œScientific Research Sector” at the State Institute of Cinematography (VGIK) between 1933 and 1936 outlines how Stalin-era researchers shifted their gaze from viewers’ tastes and attitudes to questions of perceptual management and effectiveness. Exploring the VGIK researchers’ attempts to determine the β€œlaws” of aesthetic perception and optimize intelligibility, the article brings to light the developments in scientific knowledge underwriting Soviet culture's transition to a form β€œaccessible to the millions.

    Investigation of the alpha-cluster structure of Ne-22 and Mg-22

    Get PDF
    10 pages, 2 tables, 10 figures.--PACS nrs.: 21.10.-k; 24.30.-v; 27.30.+tAn excitation function for resonance elastic scattering of alpha particles on O-18 and Ne-18 was measured using the method of inverse geometry with a very thick target. Spectroscopic information was obtained for 23 levels in the excitation energy region from 11.9 to 13.7 MeV in Ne-22. Twelve of them are new. General features of a-cluster bands in Ne-22 are analyzed in the framework of the potential model with a deep potential well. Predictions for the 11(-) level in Ne-22, as well as for the isotopic shift of the cluster levels in Mg-22, are given. Evidence is presented that new perspectives on the study of nuclear structure and nuclear spectroscopy can be obtained in complimentary measurements of alpha-cluster states in mirror Nnot equalZ nuclei.This work was supported by NSF Grant Nos. PHY99-01133 and PHY02-030099, RFBR Grant No. 00-02-17401, U.S. DOE Grant No. DE-FG03-93ER40773, and European Community-Access to Research Infrastructure action of the Improving Human Potential Programme, Contract No.HPRI-CT-1999-00110.Peer reviewe

    Determination of hydrogen in materials

    No full text
    corecore