1,560 research outputs found
Direct measurement of the hole-nuclear spin interaction in single quantum dots
We use photoluminescence spectroscopy of ''bright'' and ''dark'' exciton
states in single InP/GaInP quantum dots to measure hyperfine interaction of the
valence band hole with nuclear spins polarized along the sample growth axis.
The ratio of the hyperfine constants for the hole (C) and electron (A) is found
to be C/A~-0.11. In InP dots the contribution of spin 1/2 phosphorus nuclei to
the hole-nuclear interaction is weak, which enables us to determine
experimentally the value of C for spin 9/2 indium nuclei as C_In~-5 micro-eV.
This high value of C is in good agreement with recent theoretical predictions
and suggests that the hole-nuclear spin interaction has to be taken into
account when considering spin qubits based on holes.Comment: to be submitted to Phys Rev Let
Optimizing Replica Exchange Moves For Molecular Dynamics
In this short note we sketch the statistical physics framework of the replica
exchange technique when applied to molecular dynamics simulations. In
particular, we draw attention to generalized move sets that allow a variety of
optimizations as well as new applications of the method.Comment: 4 pages, 3 figures; revised version (1 figure added), PRE in pres
On-chip electrically controlled routing of photons from a single quantum dot
Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integrated quantum photonic circuits
Optically tunable nuclear magnetic resonance in a single quantum dot
We report optically detected nuclear magnetic resonance (ODNMR) measurements on small ensembles of nuclear spins in single GaAs quantum dots. Using ODNMR we make direct measurements of the inhomogeneous Knight field from a photoexcited electron which acts on the nuclei in the dot. The resulting shifts of the NMR peak can be optically controlled by varying the electron occupancy and its spin orientation, and lead to strongly asymmetric line shapes at high optical excitation. The all-optical control of the NMR line shape will enable position-selective control of small groups of nuclear spins inside a dot
Overhauser effect in individual InP/GaInP dots
Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a
wide range of external magnetic fields B_ext=0-5T by circularly polarized
optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T
and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of
the nuclear spin on the spin pumping efficiency. This feedback, produced by the
Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of
Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when
the Overhauser field cancels the external field. This counter-intuitive result
is shown to arise from the opposite contribution of the electron and hole
Zeeman splittings to the total exciton Zeeman energy
Pumping of nuclear spins by the optical solid effect in a quantum dot
We demonstrate that efficient optical pumping of nuclear spins in
semiconductor quantum dots (QDs) can be achieved by resonant pumping of
optically "forbidden" transitions. This process corresponds to one-to-one
conversion of a photon absorbed by the dot into a polarized nuclear spin, which
also has potential for initialization of hole spin in QDs. Pumping via the
"forbidden" transition is a manifestation of the "optical solid effect", an
optical analogue of the effect previously observed in electron spin resonance
experiments in the solid state. We find that by employing this effect, nuclear
polarization of 65% can be achieved, the highest reported so far in optical
orientation studies in QDs. The efficiency of the spin pumping exceeds that
employing the allowed transition, which saturates due to the low probability of
electron-nuclear spin flip-flop.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let
Overhauser effect in individual InP/GaInP dots
Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a
wide range of external magnetic fields B_ext=0-5T by circularly polarized
optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T
and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of
the nuclear spin on the spin pumping efficiency. This feedback, produced by the
Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of
Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when
the Overhauser field cancels the external field. This counter-intuitive result
is shown to arise from the opposite contribution of the electron and hole
Zeeman splittings to the total exciton Zeeman energy
Phonon-Induced Rabi-Frequency Renormalization of Optically Driven Single InGaAs/GaAs Quantum Dots
The authors thank the EPSRC (U.K.) EP/G001642, and the QIPIRC U.K. for financial support. A. N. is supported by the EPSRC and B.W. L. by the Royal Society.We study optically driven Rabi rotations of a quantum dot exciton transition between 5 and 50 K, and for pulse areas of up to 14 pi. In a high driving field regime, the decay of the Rabi rotations is nonmonotonic, and the period decreases with pulse area and increases with temperature. By comparing the experiments to a weak-coupling model of the exciton-phonon interaction, we demonstrate that the observed renormalization of the Rabi frequency is induced by fluctuations in the bath of longitudinal acoustic phonons, an effect that is a phonon analogy of the Lamb shift.Peer reviewe
Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum dot nano-probe
Nuclear spin polarization dynamics are measured in optically pumped
individual GaAs/AlGaAs interface quantum dots by detecting the time-dependence
of the Overhauser shift in photoluminescence (PL) spectra. Long nuclear
polarization decay times of ~ 1 minute have been found indicating inefficient
nuclear spin diffusion from the GaAs dot into the surrounding AlGaAs matrix in
externally applied magnetic field. A spin diffusion coefficient two orders
lower than that previously found in bulk GaAs is deduced.Comment: 5 pages, 3 figures, submitted to Phys Rev
- …