253 research outputs found

    Au(i)-mediated N2-elimination from triazaphospholes: a one-pot synthesis of novel N2P2-heterocycles

    Get PDF
    Novel tosyl- and mesitylsulfonyl-substituted triazaphospholes were synthesized and structurally characterized. In an attempt to prepare the corresponding Au(I)-complexes with stoichiometric amounts of AuCl·S(CH3)2, cyclo-1,3-diphospha(III)-2,4-diazane-AuCl-complexes were obtained instead. Our here presented results offer a new strategy for preparing such coordination compounds selectively in a one-pot approach

    Seasonal and Altitudinal Changes in Population Density of 20 Species of Drosophila in Chamundi Hill

    Get PDF
    A year long study was conducted to analyze the altitudinal and seasonal variation in a population of Drosophila (Diptera: Drosophilidae) on Chamundi hill of Mysore, Karnataka State, India. A total of 16,671 Drosophila flies belonging to 20 species of 4 subgenera were collected at altitudes of 680 m, 780 m, 880 m and 980 m. The subgenus Sophophora was predominant with 14 species and the subgenus Drosilopha was least represented with only a single species. Cluster analysis and constancy methods were used to analyze the species occurrence qualitatively. Altitudinal changes in the population density, and relative abundance of the different species at different seasons were also studied. The diversity of the Drosophila community was assessed by applying the Simpson and Berger-Parker indices. At 680 m the Simpson Index was low at 0.129 and the Berger- Parker index was high at 1.1 at 980 m. Linear regression showed that the Drosophila community was positively correlated with rainfall but not elevation, Furthermore the density of Drosophila changed significantly in different seasons (F = 11.20, df 2, 9; P<0.004). The distributional pattern of a species or related group of species was uneven in space and time. D. malerkotliana and D. nasuta were found at all altitudes and can be considered as dominant species

    Influence of wood species on toxicity of log-wood stove combustion aerosols: A parallel animal and air-liquid interface cell exposure study on spruce and pine smoke

    Get PDF
    Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJZahl^{Zahl}) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects
    • 

    corecore