16 research outputs found

    Nanomaterials by severe plastic deformation: review of historical developments and recent advances

    Get PDF
    International audienceSevere plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity

    The characteristics of creep in metallic materials processed by severe plastic deformation

    No full text
    Processing through the application of severe plastic deformation (SPD), as in equal-channel angular pressing (ECAP), provides an opportunity for achieving exceptional grain refinement to the submicrometer or even the nanometer level. After SPD processing, these materials may be conveniently used for evaluating the effect of a reduced grain size on the creep behaviour at elevated temperatures under testing conditions of constant load or constant stress. This report provides an overview of the creep properties of ECAP-processed metals with an emphasis on the microstructural characteristics developed by SPD, on their thermal stability and especially on the creep mechanisms that control their flow behaviour. For convenience, these properties are generally compared with the creep behaviour of coarse-grained (CG) samples of the same materials tested under identical conditions

    High Temperature Creep Behaviour of Cast Nickel-Based Superalloys INC 713 LC, B1914 and MAR-M247

    No full text
    Cast nickel-based superalloys INC713 LC, B1914 and MAR-M247 are widely used for high temperature components in the aerospace, automotive and power industries due to their good castability, high level of strength properties at high temperature and hot corrosion resistance. The present study is focused on the mutual comparison of the creep properties of the above-mentioned superalloys, their creep and fracture behaviour and the identification of creep deformation mechanism(s). Standard constant load uniaxial creep tests were carried out up to the rupture at applied stress ranging from 150 to 700 MPa and temperatures of 800–1000 °C. The experimentally determined values of the stress exponent of the minimum creep rate, n, were rationalized by considering the existence of the threshold stress, σ0. The corrected values of the stress exponent correspond to the power-law creep regime and suggest dislocation climb and glide as dominating creep deformation mechanisms. Fractographic observations clearly indicate that the creep fracture is a brittle mostly mixed transgranular and intergranular mode, resulting in relatively low values of fracture strain. Determined main creep parameters show that the superalloy MAR-M247 exhibits the best creep properties, followed by B1914 and then the superalloy INC713 LC. However, that each of the investigated superalloys can be successfully used for high temperature components fulfils the required service loading conditions

    Influence of High Pressure Sliding and Rotary Swaging on Creep Behavior of P92 Steel at 500 °C

    No full text
    High-pressure sliding (HPS) and rotary swaging (RS) at room temperature were used to form severely deformed microstructures in martensitic creep-resistant P92 steel. The deformed microstructures contained markedly different ratios of low- and high-angle grain boundaries (LAGBs/HAGBs). The application of the RS method, with an imposed equivalent strain of 1.4, led to the formation of a heterogeneous microstructure with a high number of LAGBs, while the HPS method, with an imposed equivalent strain of 7.8, led to the formation of a relatively homogeneous ultrafine-grained microstructure with a significant predominance of HAGBs. Microstructure analyses after creep testing showed that the microstructure of RS- and HPS-processed P92 steel is quite stable, but a slight coarsening of subgrains and grains during creep testing can be observed. Constant load tensile creep tests at 500 °C and initial stresses ranging from 300 to 900 MPa revealed that the specimens processed by HPS exhibited higher creep strength (slower minimum creep rate) and ductility compared to the coarse-grained and RS-processed P92 steel. However, the HPS-processed P92 steel also exhibited lower values of stress exponent n than the other investigated states of P92 steel. For this reason, the differences in minimum creep rates determined for different states decrease with decreasing values of applied stress, and at applied stresses lower than 500 MPa, the creep resistance of the RS-processed state is higher than the creep resistance of the HPS-processed state

    Influence of High Pressure Sliding and Rotary Swaging on Creep Behavior of P92 Steel at 500 °C

    No full text
    High-pressure sliding (HPS) and rotary swaging (RS) at room temperature were used to form severely deformed microstructures in martensitic creep-resistant P92 steel. The deformed microstructures contained markedly different ratios of low- and high-angle grain boundaries (LAGBs/HAGBs). The application of the RS method, with an imposed equivalent strain of 1.4, led to the formation of a heterogeneous microstructure with a high number of LAGBs, while the HPS method, with an imposed equivalent strain of 7.8, led to the formation of a relatively homogeneous ultrafine-grained microstructure with a significant predominance of HAGBs. Microstructure analyses after creep testing showed that the microstructure of RS- and HPS-processed P92 steel is quite stable, but a slight coarsening of subgrains and grains during creep testing can be observed. Constant load tensile creep tests at 500 °C and initial stresses ranging from 300 to 900 MPa revealed that the specimens processed by HPS exhibited higher creep strength (slower minimum creep rate) and ductility compared to the coarse-grained and RS-processed P92 steel. However, the HPS-processed P92 steel also exhibited lower values of stress exponent n than the other investigated states of P92 steel. For this reason, the differences in minimum creep rates determined for different states decrease with decreasing values of applied stress, and at applied stresses lower than 500 MPa, the creep resistance of the RS-processed state is higher than the creep resistance of the HPS-processed state
    corecore