177 research outputs found

    Photoproduction of rho0 in ultra--peripheral nuclear collisions at ALICE

    Full text link
    Photoproduction of ρ0\rho^0 mesons in ultra-peripheral Pb+Pb collisions has been studied by the ALICE Collaboration at the CERN LHC. The strong photon flux associated with relativistic charged nuclei leads to a very large cross section for exclusive photoproduction of ρ0\rho^0 meson in interactions of the type Pb+PbPb+Pb+ρ0Pb + Pb \rightarrow Pb + Pb + \rho^0. For a ρ0\rho^0 produced at mid-rapidity at the LHC, the photon-nucleus center of mass energy is higher than in any previous experiment. The ALICE detector is a general purpose detector dedicated to study heavy--ion collisions. ALICE has excellent performance in the low pTp_T region, and can reconstruct charged particle tracks with 0.1 GeV/c pT100\leq p_T \leq 100 GeV/c. In this analysis all tracks were required to be within ALICE's central barrel. Analysis of data from the first heavy ion run at the LHC in 2010 will be discussed in this paper.Comment: 8 pages, 8 figures, prepared for the Proceedings of the International Workshop On Physics At The LHC (Kruger 2012) December 3 - 7, 2012 Protea Hotel, Kruger Gate South Afric

    A hybrid multi-particle approach to range assessment-based treatment verification in particle therapy

    Get PDF
    Particle therapy (PT) used for cancer treatment can spare healthy tissue and reduce treatment toxicity. However, full exploitation of the dosimetric advantages of PT is not yet possible due to range uncertainties, warranting development of range-monitoring techniques. This study proposes a novel range-monitoring technique introducing the yet unexplored concept of simultaneous detection and imaging of fast neutrons and prompt-gamma rays produced in beam-tissue interactions. A quasimonolithic organic detector array is proposed, and its feasibility for detecting range shifts in the context of proton therapy is explored through Monte Carlo simulations of realistic patient models and detector resolution efects. The results indicate that range shifts of 1 mm can be detected at relatively low proton intensities (22.30(13) × 107 protons/spot) when spatial information obtained through imaging of both particle species are used simultaneously. This study lays the foundation for multiparticle detection and imaging systems in the context of range verifcation in PTpublishedVersio

    Measurement of quarkonium production at forward rapidity in pp collisions at √s=7 TeV

    Get PDF
    The inclusive production cross sections at forward rapidity of J/ψ , ψ(2S) , Υ (1S) and Υ (2S) are measured in pp collisions at s√=7 TeV with the ALICE detector at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 1.35 pb‾¹ . Quarkonia are reconstructed in the dimuon-decay channel and the signal yields are evaluated by fitting the μ+μ− invariant mass distributions. The differential production cross sections are measured as a function of the transverse momentum pT and rapidity y , over the ranges 0<pT<20 GeV/c for J/ψ , 0<pT<12 GeV/c for all other resonances and for \(2.5 . The measured cross sections integrated over pT and y , and assuming unpolarized quarkonia, are: σJ/ψ=6.69±0.04±0.63 μ b, σψ(2S)=1.13±0.07±0.19 μ b, σΥ(1S)=54.2±5.0±6.7 nb and σΥ(2S)=18.4±3.7±2.9 nb, where the first uncertainty is statistical and the second one is systematic. The results are compared to measurements performed by other LHC experiments and to theoretical models

    Event-by-event mean pT fluctuations in pp and Pb–Pb collisions at the LHC

    Get PDF
    Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at TeX TeX 0.9, 2.76 and 7 TeV, and Pb–Pb collisions at TeX TeX 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb–Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb–Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb–Pb are in qualitative agreement with previous measurements in Au–Au at lower collision energies and with expectations from models that incorporate collective phenomena

    Suppression of ψ(2S) production in p-Pb collisions at √sNN=5.02 TeV .

    Get PDF
    The ALICE Collaboration has studied the inclusive production of the charmonium state ψ(2S) in proton-lead (p-Pb) collisions at the nucleon-nucleon centre of mass energy √sNN = 5.02TeV at the CERN LHC. The measurement was performed at forward (2.03 < ycms < 3.53) and backward (−4.46 < ycms < −2.96) centre of mass rapidities, studying the decays into muon pairs. In this paper, we present the inclusive production cross sections σ (2S), both integrated and as a function of the transverse momentum pT, for the two ycms domains. The results are compared to those obtained for the 1S vector state (J/ψ), by showing the ratios between the production cross sections, as well as the double ratios [σ (2S)/σJ/ ]pPb/[σ (2S)/σJ/ ]pp between p-Pb and proton-proton collisions. Finally, the nuclear modification factor for inclusive ψ(2S) is evaluated and compared to the measurement of the same quantity for J/ψ and to theoretical models including parton shadowing and coherent energy loss mechanisms. The results show a significantly larger suppression of the ψ(2S) compared to that measured for J/ψ and to models. These observations represent a clear indication for sizeable final state effects on ψ(2S) production

    Transverse momentum dependence of inclusive primary charged-particle production in p–Pb collisions at √sNN=5.02 TeV

    Get PDF
    The transverse momentum ( pT ) distribution of primary charged particles is measured at midrapidity in minimum-bias p–Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector at the LHC in the range \(0.15 GeV/ c . The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for pT larger than 2 GeV/ c , with a weak indication of a Cronin-like enhancement for pT around 4 GeV/c . The measurement is compared to theoretical calculations and to data in Pb–Pb collisions at sNN−−−√=2.76 TeV

    Production of charged pions, kaons and protons at large transverse momenta in pp and Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV

    Get PDF
    Transverse momentum spectra of π±,K±\pi^{\pm}, K^{\pm} and p(pˉ)p(\bar{p}) up to pTp_T = 20 GeV/c at mid-rapidity, |y| \le 0.8, in pp and Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV have been measured using the ALICE detector at the LHC. At intermediate pTp_T (2-8 GeV/c) an enhancement of the proton-to-proton ratio, (p + \bar{p})/(\pi^+ + \pi^-\(), with respect to pp collisions is observed and the ratio reaches 0.80 in central Pb-Pb collisions. The measurement of the nuclear modification factors for \(\pi^{\pm}, K^{\pm} and p(pˉ)p(\bar{p}) indicates that within the systematic and statistical uncertainties they are the same at high pTp_T (> 10 GeV/c), suggesting that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets.publishedVersio

    Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC

    Get PDF
    The average transverse momentum versus the charged-particle multiplicity NchN_{ch} was measured in p-Pb collisions at a collision energy per nucleon-nucleon pair sNN\sqrt{s_{NN}} = 5.02 TeV and in pp collisions at collision energies of s\sqrt{s} = 0.9, 2.76, and 7 Tev in the kinematic range 0.15 with NchN_{ch} is observed, which is much stronger than that measured in Pb-Pb collisions. For pp collisions, this could be attributed, within a model of hadronizing strings, to multiple-parton interactions and to a final-state color reconnection mechanism. The data in p-Pb and Pb-Pb collisions cannot be described by an incoherent superposition of nucleon-nucleon collisions and pose a challenge to most of the event generators.publishedVersio
    corecore