32 research outputs found

    mRNA profiling of the cancer degradome in oesophago-gastric adenocarcinoma.

    Get PDF
    BACKGROUND: Degradation of the extracellular matrix is fundamental to tumour development, invasion and metastasis. Several protease families have been implicated in the development of a broad range of tumour types, including oesophago-gastric (OG) adenocarcinoma. The aim of this study was to analyse the expression levels of all core members of the cancer degradome in OG adenocarcinoma and to investigate the relationship between expression levels and tumour/patient variables associated with poor prognosis. METHODS: Comprehensive expression profiling of the protease families (matrix metalloproteinases (MMPs), members of the ADAM metalloproteinase-disintegrin family (ADAMs)), their inhibitors (tissue inhibitors of metalloproteinase), and molecules involved in the c-Met signalling pathway, was performed using quantitative real-time reverse transcription polymerase chain reaction in a cohort of matched malignant and benign peri-tumoural OG tissue (n=25 patients). Data were analysed with respect to clinico-pathological variables (tumour stage and grade, age, sex and pre-operative plasma C-reactive protein level). RESULTS: Gene expression of MMP1, 3, 7, 9, 10, 11, 12, 16 and 24 was upregulated by factors >4-fold in OG adenocarcinoma samples compared with matched benign tissue (P<0.01). Expression of ADAM8 and ADAM15 correlated significantly with tumour stage (P=0.048 and P=0.044), and ADAM12 expression correlated with tumour grade (P=0.011). CONCLUSION: This study represents the first comprehensive quantitative analysis of the expression of proteases and their inhibitors in human OG adenocarcinoma. These findings implicate elevated ADAM8, 12 and 15 mRNA expression as potential prognostic molecular markers

    Seropositivity for CMV and IL-6 levels are associated with grip strength and muscle size in the elderly

    Get PDF
    BACKGROUND: Sarcopenia is an important cause of morbidity and mortality in older adults, with immunosenescence and inflammation being possible underlying mechanisms. We investigated the relationship between latent cytomegalovirus (CMV) infection, Interleukin 6 (IL-6) levels, muscle size and strength in a group of healthy older community-dwelling people. METHODS: Participants were healthy volunteers from the Lothian Birth Cohort 1936 study. Participants had IL-6 level and CMV antibody titre measured at age 70 years and grip strength and a volumetric T1-weighted MRI brain scan (allowing measurement of neck muscle cross-sectional area (CSA)) at age 73. Markers of childhood deprivation were adjusted for in the analysis due to correlations between childhood deprivation and latent CMV infection. RESULTS: 866 participants were studied; 448 men (mean age 72.48 years, sd 0.70) and 418 women (mean age 72.51 years, sd 0.72). In men, CMV seropositivity was associated with smaller neck muscle CSA (p = 0.03, partial eta squared = 0.01), even after adjustment for IL-6 levels. Neck muscle CSA was not associated with CMV seropositivity in women, or CMV antibody titre or IL-6 level in either sex. Grip strength associated negatively with IL-6 level (right grip strength p<0.00001, partial eta squared 0.032 and left grip strength p<0.00001, partial eta squared 0.027) with or without adjustment for CMV serostatus or antibody titre. CMV status and antibody titre were not significantly associated with grip strength in either hand. CONCLUSION: These findings support the hypothesis that there is a relationship between markers of immunosenescence (i.e. CMV serostatus and IL6 level) and low muscle mass and strength and longitudinal studies in older cohorts are now required to investigate these relationships further

    Multicentre cohort study to define and validate pathological assessment of response to neoadjuvant therapy in oesophagogastric adenocarcinoma

    Get PDF
    BACKGROUND: This multicentre cohort study sought to define a robust pathological indicator of clinically meaningful response to neoadjuvant chemotherapy in oesophageal adenocarcinoma. METHODS: A questionnaire was distributed to 11 UK upper gastrointestinal cancer centres to determine the use of assessment of response to neoadjuvant chemotherapy. Records of consecutive patients undergoing oesophagogastric resection at seven centres between January 2000 and December 2013 were reviewed. Pathological response to neoadjuvant chemotherapy was assessed using the Mandard Tumour Regression Grade (TRG) and lymph node downstaging. RESULTS: TRG (8 of 11 centres) was the most widely used system to assess response to neoadjuvant chemotherapy, but there was discordance on how it was used in practice. Of 1392 patients, 1293 had TRG assessment; data were available for clinical and pathological nodal status (cN and pN) in 981 patients, and TRG, cN and pN in 885. There was a significant difference in survival between responders (TRG 1–2; median overall survival (OS) not reached) and non-responders (TRG 3–5; median OS 2·22 (95 per cent c.i. 1·94 to 2·51) years; P < 0·001); the hazard ratio was 2·46 (95 per cent c.i. 1·22 to 4·95; P = 0·012). Among local non-responders, the presence of lymph node downstaging was associated with significantly improved OS compared with that of patients without lymph node downstaging (median OS not reached versus 1·92 (1·68 to 2·16) years; P < 0·001). CONCLUSION: A clinically meaningful local response to neoadjuvant chemotherapy was restricted to the small minority of patients (14·8 per cent) with TRG 1–2. Among local non-responders, a subset of patients (21·3 per cent) derived benefit from neoadjuvant chemotherapy by lymph node downstaging and their survival mirrored that of local responders

    Rearrangement processes and structural variations show evidence of selection in oesophageal adenocarcinomas

    Get PDF
    Oesophageal adenocarcinoma (OAC) provides an ideal case study to characterize large-scale rearrangements. Using whole genome short-read sequencing of 383 cases, for which 214 had matched whole transcriptomes, we observed structural variations (SV) with a predominance of deletions, tandem duplications and inter-chromosome junctions that could be identified as LINE-1 mobile element (ME) insertions. Complex clusters of rearrangements resembling breakage-fusion-bridge cycles or extrachromosomal circular DNA accounted for 22% of complex SVs affecting known oncogenes. Counting SV events affecting known driver genes substantially increased the recurrence rates of these drivers. After excluding fragile sites, we identified 51 candidate new drivers in genomic regions disrupted by SVs, including ETV5, KAT6B and CLTC. RUNX1 was the most recurrently altered gene (24%), with many deletions inactivating the RUNT domain but preserved the reading frame, suggesting an altered protein product. These findings underscore the importance of identification of SV events in OAC with implications for targeted therapies

    Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance

    Get PDF
    Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy trials have thus far been disappointing owing to a lack of robust stratification methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrated that this is a heterogeneous cancer dominated by copy number alterations with frequent large-scale rearrangements. Co-amplification of receptor tyrosine kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; thus tailored combination RTK inhibitor (RTKi) therapy might be required, as we demonstrate in vitro. However, mutational signatures showed three distinct molecular subtypes with potential therapeutic relevance, which we verified in an independent cohort (n = 87): (i) enrichment for BRCA signature with prevalent defects in the homologous recombination pathway; (ii) dominant T>G mutational pattern associated with a high mutational load and neoantigen burden; and (iii) C>A/T mutational pattern with evidence of an aging imprint. These subtypes could be ascertained using a clinically applicable sequencing strategy (low coverage) as a basis for therapy selection

    Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1.

    Get PDF
    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project.Cancer Research UK, Medical Research CouncilThis is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep3241

    Transcriptomic profiling reveals three molecular phenotypes of adenocarcinoma at the gastroesophageal junction

    Get PDF
    Cancers occurring at the gastroesophageal junction (GEJ) are classified as predominantly esophageal or gastric, which is often difficult to decipher. We hypothesized that the transcriptomic profile might reveal molecular subgroups which could help to define the tumor origin and behavior beyond anatomical location. The gene expression profiles of 107 treatment‐naïve, intestinal type, gastroesophageal adenocarcinomas were assessed by the Illumina‐HTv4.0 beadchip. Differential gene expression (limma), unsupervised subgroup assignment (mclust) and pathway analysis (gage) were undertaken in R statistical computing and results were related to demographic and clinical parameters. Unsupervised assignment of the gene expression profiles revealed three distinct molecular subgroups, which were not associated with anatomical location, tumor stage or grade (p > 0.05). Group 1 was enriched for pathways involved in cell turnover, Group 2 was enriched for metabolic processes and Group 3 for immune‐response pathways. Patients in group 1 showed the worst overall survival (p = 0.019). Key genes for the three subtypes were confirmed by immunohistochemistry. The newly defined intrinsic subtypes were analyzed in four independent datasets of gastric and esophageal adenocarcinomas with transcriptomic data available (RNAseq data: OCCAMS cohort, n = 158; gene expression arrays: Belfast, n = 63; Singapore, n = 191; Asian Cancer Research Group, n = 300). The subgroups were represented in the independent cohorts and pooled analysis confirmed the prognostic effect of the new subtypes. In conclusion, adenocarcinomas at the GEJ comprise three distinct molecular phenotypes which do not reflect anatomical location but rather inform our understanding of the key pathways expressed

    Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1

    Get PDF
    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project
    corecore