69 research outputs found

    Exploring the Structure of High Temperature, Iron-bearing Liquids

    Get PDF
    This paper describes the direct measurements of the structure of iron-bearing liquids using a combination of containerless techniques and in-situ high energy x-ray diffraction.These capabilities provide data that is important to help model and optimize processes such as smelting, steel making, and controlling slag chemistry. A successful programme of liquid studies has been undertaken and the Advanced Photon Source using these combined techniques which include the provision of gas mixing and the control of pO2and the changing influence of mixed valance elements. It is possible to combine rapid image acquisition with quenching of liquids to obtain the full diffraction patterns of deeply supercooled liquids and the metastable supercooled liquid regime, where the liquid structures and viscosity change most dramatically, can also be explored

    The Structure of Liquid and Amorphous Hafnia.

    Get PDF
    Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf-O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf-Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf-Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO6,7 polyhedra resembling that observed in the monoclinic phase

    Shaping success: clinical implementation of a 3D-printed electron cutout program in external beam radiation therapy

    Get PDF
    PurposeThe integration of 3D-printing technology into radiation therapy (RT) has allowed for a novel method to develop personalized electron field-shaping blocks with improved accuracy. By obviating the need for handling highly toxic Cerrobend molds, the clinical workflow is significantly streamlined. This study aims to expound upon the clinical workflow of 3D-printed electron cutouts in RT and furnish one year of in-vivo dosimetry data.Methods and materials3D-printed electron cutouts for 6x6 cm, 10x10 cm, and 15x15 cm electron applicators were designed and implemented into the clinical workflow after dosimetric commissioning to ensure congruence with the Cerrobend cutouts. The clinical workflow consisted of four parts: i) the cutout aperture was extracted from the treatment planning system (TPS). A 3D printable cutout was then generated automatically through custom scripts; ii) the cutout was 3D-printed with PLA filament, filled with tungsten ball bearings, and underwent quality assurance (QA) to verify density and dosimetry; iii) in-vivo dosimetry was performed with optically stimulated luminescence dosimeters (OSLDs) for a patient’s first treatment and compared to the calculated dose in the TPS; iv) after treatment completion, the 3D-printed cutout was recycled.ResultsQA and in-vivo OSLD measurements were conducted (n=40). The electron cutouts produced were 6x6 cm (n=3), 10x10 cm (n=30), and 15x15 cm (n=7). The expected weight of the cutouts differed from the measured weight by 0.4 + 1.1%. The skin dose measured with the OSLDs was compared to the skin dose in the TPS on the central axis. The difference between the measured and TPS doses was 4.0 + 5.2%.ConclusionThe successful clinical implementation of 3D-printed cutouts reduced labor, costs, and removed the use of toxic materials in the workplace while meeting clinical dosimetric standards

    Joint diffraction and modeling approach to the structure of liquid alumina

    Get PDF
    The structure of liquid alumina at a temperature ∼2400 K near its melting point was measured using neutron and high-energy x-ray diffraction by employing containerless aerodynamic–levitation and laser-heating techniques. The measured diffraction patterns were compared to those calculated from molecular dynamics simulations using a variety of pair potentials, and the model found to be in best agreement with experiments was refined using the reverse Monte Carlo method. The resultant model shows that the melt is composed predominantly of AlO4 and AlO5 units, in the approximate ratio of 2:1, with only minor fractions of AlO3 and AlO6 units. The majority of Al-O-Al connections involve corner-sharing polyhedra (83%), although a significant minority involve edge-sharing polyhedra (16%), predominantly between AlO5 and either AlO5 or AlO4 units. Most of the oxygen atoms (81%) are shared among three or more polyhedra, and the majority of these oxygen atoms are triply shared among one or two AlO4 units and two or one AlO5 units, consistent with the abundance of these polyhedra in the melt and their fairly uniform spatial distribution

    Impact of Audiovisual-Assisted Therapeutic Ambience in Radiation Therapy (AVATAR) on Anesthesia Use, Payer Charges, and Treatment Time in Pediatric Patients

    Get PDF
    Purpose Pediatric radiation therapy (RT) requires optimal immobilization that often necessitates daily anesthesia. To decrease anesthesia use, we implemented a novel audiovisual-assisted therapeutic ambience in RT (AVATAR) system that projects video onto a radiolucent screen within the child’s line of vision to provide attentional diversion. We investigated its reduction on anesthesia use, payer charges, and treatment time, in addition to its impact on radiation delivery. Methods and Materials A 6-year retrospective analysis was performed among children undergoing RT (n = 224) 3 years before and 3 years after the introduction of AVATAR. The frequency of anesthesia use before and after AVATAR implementation, in addition to RT treatment times, were compared. The number of spared anesthesia treatments allowed for a charge to payer analysis. To document the lack of surface dose perturbation by AVATAR, a phantom craniospinal treatment course was delivered both with and without AVATAR. Additionally, an ion chamber course was delivered to document changes to the dose at depth. Results More children were able to avoid anesthesia use entirely in the post-AVATAR cohort compared with the pre-AVATAR cohort (73.2% vs 63.4%; P = .03), and fewer required anesthesia for each treatment (18.8% vs 33%; P = .03). AVATAR introduction reduced anesthesia use for all ages studied. Treatment time per session was reduced by 38% using AVATAR compared with anesthesia. There were 326 fewer anesthesia sessions delivered over 3 years after AVATAR was introduced, with an estimated savings of >500,000.Opticallystimulatedluminescentdosimetersrevealedasmallincreaseindoseof0.8ConclusionsAVATARintroductiondecreasedanesthesiauseinchildrenundergoingRT.Morechildrenavoidedanesthesiaentirely,andfewerneededanesthesiaforeverytreatment,resultinginareductionintreatmenttimeandsavingsofnearly500,000. Optically stimulated luminescent dosimeters revealed a small increase in dose of 0.8% to 9.5% with AVATAR, whereas the use of a thermomolded face mask increased skin dose by as much as 58%. Conclusions AVATAR introduction decreased anesthesia use in children undergoing RT. More children avoided anesthesia entirely, and fewer needed anesthesia for every treatment, resulting in a reduction in treatment time and savings of nearly 550,000 in approximately 3 years, with minimal perturbation of RT dose delivery

    FLASH Irradiation Results in Reduced Severe Skin Toxicity Compared to Conventional-Dose-Rate Irradiation

    Get PDF
    Radiation therapy, along with surgery and chemotherapy, is one of the main treatments for cancer. While radiotherapy is highly effective in the treatment of localized tumors, its main limitation is its toxicity to normal tissue. Previous preclinical studies have reported that ultra-high dose-rate (FLASH) irradiation results in reduced toxicity to normal tissues while controlling tumor growth to a similar extent relative to conventional-dose-rate (CONV) irradiation. To our knowledge this is the first report of a dose-response study in mice comparing the effect of FLASH irradiation vs. CONV irradiation on skin toxicity. We found that FLASH irradiation results in both a lower incidence and lower severity of skin ulceration than CONV irradiation 8 weeks after single-fraction hemithoracic irradiation at high doses (30 and 40 Gy). Survival was also higher after FLASH hemithoracic irradiation (median survival >180 days at doses of 30 and 40 Gy) compared to CONV irradiation (median survival 100 and 52 days at 30 and 40 Gy, respectively). No ulceration was observed at doses 20 Gy or below in either FLASH or CONV. These results suggest a shifting of the dose-response curve for radiation-induced skin ulceration to the right for FLASH, compared to CONV irradiation, suggesting the potential for an enhanced therapeutic index for radiation therapy of cancer

    Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice

    Get PDF
    Radiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
    corecore