496 research outputs found

    Wired on Steroids: Sexual Differentiation of the Brain and Its Role in the Expression of Sexual Partner Preferences

    Get PDF
    The preference to seek out a sexual partner of the opposite sex is robust and ensures reproduction and survival of the species. Development of female-directed partner preference in the male is dependent on exposure of the developing brain to gonadal steroids synthesized during critical periods of sexual differentiation of the central nervous system. In the absence of androgen exposure, a male-directed partner preference develops. The development and expression of sexual partner preference has been extensively studied in rat, ferret, and sheep model systems. From these models it is clear that gonadal testosterone, often through estrogenic metabolites, cause both masculinization and defeminization of behavior during critical periods of brain development. Changes in the steroid environment during these critical periods result in atypical sexual partner preference. In this manuscript, we review the major findings which support the hypothesis that the organizational actions of sex steroids are responsible for sexual differentiation of sexual partner preferences in select non-human species. We also explore how this information has helped to frame our understanding of the biological influences on human sexual orientation and gender identity

    ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments

    Get PDF
    The Arabidopsis aberrant testa shape (ats) mutant produces a single integument instead of the two integuments seen in wild-type ovules. Cellular anatomy and patterns of marker gene expression indicate that the single integument results from congenital fusion of the two integuments of the wild type. Isolation of the ATS locus showed it to encode a member of the KANADI (KAN) family of putative transcription factors, previously referred to as KAN4. ATS was expressed at the border between the two integuments at the time of their initiation, with expression later confined to the abaxial layer of the inner integument. In an inner no outer (ino) mutant background, where an outer integument does not form, the ats mutation led to amorphous inner integument growth. The kan1 kan2 double mutant exhibits a similar amorphous growth of the outer integument without affecting inner integument growth. We hypothesize that ATS and KAN1/KAN2 play similar roles in the specification of polarity in the inner and outer integuments, respectively, that parallel the known roles of KAN proteins in promoting abaxial identity during leaf development. INO and other members of the YABBY gene family have been hypothesized to have similar parallel roles in outer integument and leaf development. Together, these two hypotheses lead us to propose a model for normal integument growth that also explains the described mutant phenotypes

    Hepatotoxicity of a Cannabidiol-rich cannabis extract in the mouse model

    Get PDF
    © 2019 Xide Ye et al. Gastrodia elata Blume belongs to the Orchidaceae family. G. elata is often processed when used in traditional Chinese medicine (TCM). In the current study, a traditional processing method, known as Jianchang Bang, was applied. Steamed and dried (S&D) G. elata was processed with ginger juice for up to 5 days (GEP5D). An UHPLC-MS/MS combined with a chemometric method was developed for the analysis of processed G. elata along with the raw material as well as steamed and dried G. elata. As a result, the primary marker compounds were identified with the aid of TOF-MS and MS/MS analyses. Compared with the raw material of G. elata with GEP5D, three new parishin-type compounds were identified according to their retention time, accurate mass, and fragmentation patterns. The chromatographic peak areas for marker compounds, including S-(gastrodin)-glutathione, S-(4-hydroxybenzylamine)-glutathione, and parishin-type compounds, changed significantly. This result indicated that by applying the Jianchang Bang method, changes in chemical composition in G. elata contents were observed. The study also demonstrated that chemometric analysis is helpful in understanding the processing mechanism and will provide scientific support for the clinical application of G. elata

    Bottle Size and Weight Gain in Formula-Fed Infants

    Get PDF
    Formula-fed infants may be at greater risk for overfeeding and rapid weight gain. Different size bottles are used for feeding infants, although little is known about whether bottle size is related to weight gain in bottle-fed infants

    Detection of skewed X-chromosome inactivation in Fragile X syndrome and X chromosome aneuploidy using quantitative melt analysis.

    Get PDF
    Methylation of the fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary positioned fragile X related epigenetic element 2 (FREE2), reveals skewed X-chromosome inactivation (XCI) in fragile X syndrome full mutation (FM: CGG > 200) females. XCI skewing has been also linked to abnormal X-linked gene expression with the broader clinical impact for sex chromosome aneuploidies (SCAs). In this study, 10 FREE2 CpG sites were targeted using methylation specific quantitative melt analysis (MS-QMA), including 3 sites that could not be analysed with previously used EpiTYPER system. The method was applied for detection of skewed XCI in FM females and in different types of SCA. We tested venous blood and saliva DNA collected from 107 controls (CGG < 40), and 148 FM and 90 SCA individuals. MS-QMA identified: (i) most SCAs if combined with a Y chromosome test; (ii) locus-specific XCI skewing towards the hypomethylated state in FM females; and (iii) skewed XCI towards the hypermethylated state in SCA with 3 or more X chromosomes, and in 5% of the 47,XXY individuals. MS-QMA output also showed significant correlation with the EpiTYPER reference method in FM males and females (P < 0.0001) and SCAs (P < 0.05). In conclusion, we demonstrate use of MS-QMA to quantify skewed XCI in two applications with diagnostic utility

    Safety and molecular-toxicological implications of cannabidiol-rich cannabis extract and methylsulfonylmethane co-administration

    Get PDF
    © 2020 by the authors. Cannabidiol (CBD) is a biologically active, non-psychotropic component of Cannabis sativa whose popularity has grown exponentially in recent years. Besides a wealth of potential health benefits, ingestion of CBD poses risks for a number of side effects, of which hepatotoxicity and CBD/herb-drug interactions are of particular concern. Here, we investigated the interaction potential between the cannabidiol-rich cannabis extract (CRCE) and methylsulfonylmethane (MSM), a popular dietary supplement, in the mouse model. For this purpose, 8-week-old male C57BL6/J mice received MSM-containing water (80 mg/100 mL) ad libitum for 17 days. During the last three days of treatment, mice received three doses of CRCE administered in sesame oil via oral gavage (123 mg/kg/day). Administration of MSM alone did not result in any evidence of liver toxicity and did not induce expression of mouse cytochrome P450 (CYP) enzymes. Administration of CRCE did produce significant (p \u3c 0.05) increases in Cyp1a2, Cyp2b10, Cyp2c29, Cyp3a4, Cyp3a11, Cyp2c65, and Cyp2c66 messenger RNA, however, this effect was not amplified by MSM/CRCE cotreatment. Similarly, no evidence of liver toxicity was observed in MSM/CRCE dosed mice. In conclusion, short-term MSM/CRCE co-administration did not demonstrate any evidence of hepatotoxicity in the mouse model

    Screening for Major Depressive Disorder in Children and Adolescents: A Systematic Review for the U.S. Preventive Services Task Force

    Get PDF
    BACKGROUND: Major depressive disorder (MDD) is common among children and adolescents and is associated with functional impairment and suicide. PURPOSE: To update the 2009 U.S. Preventive Services Task Force (USPSTF) systematic review on screening for and treatment of MDD in children and adolescents in primary care settings. DATA SOURCES: Several electronic searches (May 2007 to February 2015) and searches of reference lists of published literature. STUDY SELECTION: Trials and recent systematic reviews of treatment, test-retest studies of screening, and trials and large cohort studies for harms. DATA EXTRACTION: Data were abstracted by 1 investigator and checked by another; 2 investigators independently assessed study quality. DATA SYNTHESIS: Limited evidence from 5 studies showed that such tools as the Beck Depression Inventory and Patient Health Questionnaire for Adolescents had reasonable accuracy for identifying MDD among adolescents in primary care settings. Six trials evaluated treatment. Several individual fair- and good-quality studies of fluoxetine, combined fluoxetine and cognitive behavioral therapy, escitalopram, and collaborative care demonstrated benefits of treatment among adolescents, with no associated harms. LIMITATION: The review included only English-language studies, narrow inclusion criteria focused only on MDD, high thresholds for quality, potential publication bias, limited data on harms, and sparse evidence on long-term outcomes of screening and treatment among children younger than 12 years. CONCLUSION: No evidence was found of a direct link between screening children and adolescents for MDD in primary care or similar settings and depression or other health-related outcomes. Evidence showed that some screening tools are accurate and some treatments are beneficial among adolescents (but not younger children), with no evidence of associated harms. PRIMARY FUNDING SOURCE: Agency for Healthcare Research and Quality

    Paradoxical patterns of sinusoidal obstruction syndrome-like liver injury in aged female CD-1 mice triggered by cannabidiol-rich cannabis extract and acetaminophen co-administration

    Get PDF
    © 2019 The Authors. Environmental Toxicology published by Wiley Periodicals, Inc. Exposure to environmental contaminants and consumption of a high, saturated fatty diet has been demonstrated to promote precursors for metabolic syndrome (hyperglycemia, hyperinsulinemia, and hypertriglyceridemia). The purpose of this study was to determine if exposure to the most prevalent environmental persistent organic pollutants (POPs) would act as causative agents to promote metabolic syndrome independent of dietary intake. We hypothesized that POPs will activate the advanced glycated end-product (AGE)-and receptor for AGE (RAGE) signaling cascade to promote downstream signaling modulators of cardiovascular remodeling and oxidative stress in the heart. At 5-weeks of age nondiabetic (WT) and diabetic (ob/ob) mice were exposed POPs mixtures by oral gavage twice a week for 6-weeks. At the end of 6-weeks, animals were sacrificed and the hearts were taken for biochemical analysis. Increased activation of the AGE-RAGE signaling cascade via POPs exposure resulted in elevated levels of fibroblast differentiation (α-smooth muscle actin) and RAGE expression indicated maladaptive cardiac remodeling. Conversely, the observed decreased superoxide dismutase-1 and -2 (SOD-1 and SOD-2) expression may exacerbate the adverse changes occurring as a result of POPs treatment to reduce innate cardioprotective mechanisms. In comparison, ventricular collagen levels were decreased in mice exposed to POPs. In conclusion, exposure to organic environmental pollutants may intensify oxidative and inflammatory stressors to overwhelm protective mechanisms allowing for adverse cardiac remodeling
    corecore