270 research outputs found

    Kivun ja kiitoksen tarinoita:lääkäreiden ja kätilöiden kuvaukset blogeissa julkaistuissa synnytyskertomuksissa

    Get PDF
    Tiivistelmä. Tässä tiedeviestinnän pro gradu -työssä tutkitaan synnytystä äitien kertomana. Tutkimuksen teoreettisena viitekehyksenä on sosiaalinen konstruktionismi, joka katsoo, että todellisuutta rakennetaan ja muovataan kielen avulla. Kun äidit muistelevat synnytyksiään, he paitsi kertovat tapahtumista myös konstruoivat kulttuurista kuvaa synnytyksestä. Tutkimusmetodina on sisällönanalyysi. Tutkimuksessa selvitetään, millaisia synnytyskertomukset ovat rakenteeltaan ja miten äidit kuvailevat lääkäreitä ja kätilöitä. Taustaoletuksena on, että äidit ovat oman synnytyksensä parhaita asiantuntijoita. Tutkimusaineistona on 19 äitien kirjoittamaa ja julkisissa blogeissa julkaistua synnytyskertomusta. Synnytyskertomukset ovat rakenteeltaan hyvin samanlaisia. Kertomukset etenevät pohjustuksen ja latenssi- ja avautumisvaiheen kuvailujen jälkeen synnytyksen aktiiviseen vaiheeseen ja ponnistukseen. Henkisten ja fyysisten ponnistusten jälkeen syntyy lapsi, jonka äiti saa rinnalleen. Lopuksi äiti kuvailee vointiaan ja synnytystään ja kertoo olevansa kiitollinen kätilöille, lääkäreille ja tukihenkilölleen. Aineistoon sisältyy kahdeksan keisarileikkausta eli sektiosynnystä (noin 42 % aineiston synnytyksistä). Vuosittain noin 16–17 % lapsista syntyy Suomessa sektiolla. Sektiosynnytykset ovat siis tässä aineistossa yliedustettuja. Aineistoon kuuluu yksi kaksossynnytys. Lääkäri-ilmauksia on aineistossa 81 ja kätilöilmauksia lähes kaksinkertainen määrä, 154. Ilmaukset on koodattu sisällönanalyysin keinoin. Analyysi etenee alkuperäisestä ilmauksesta pelkistettyyn ilmaukseen ja sen jälkeen ala-, ylä- ja pääkategoriaan. Sekä lääkärit että kätilöt esiintyvät kertomuksissa kahdessa roolissa; aktiivisina toimijoina ja toiminnan kohteina. Heidän roolinsa kuitenkin eroavat selvästi toisistaan. Kun lääkäri esiintyy aktiivisena toimijana, hän yleensä joko saapuu paikalle (28,4 %) tai kommunikoi (28,4 %). Kätilö puolestaan kommunikoi (52,6 %) tai tekee työtään (25,3%). Kätilö saapuu paikalle vain neljästi (2,6 %). Lääkärit ja kätilöt kommunikoivat hyvin eri tavoin. Lääkäri keskustelee synnyttäjän kanssa vapaamuotoisesti vain kolmessa lainauksessa. Muut keskustelut liittyvät synnytyksen edistymiseen ja hoitotoimenpiteisiin. Lääkäri ei kannusta tai tsemppaa yhdessäkään lainauksessa, mutta hän toteaa, sanoo ja rauhoittelee. Kätilö puolestaan kertoo tapahtumista, ehdottaa kivunlievitystä, kysyy lupaa, kannustaa ja vitsailee. Kätilön ja synnyttäjän välinen kommunikointi on tasavertaista ja kahdensuuntaista. Lääkäri esiintyy toiminnan kohteena useammin kuin kätilö, sillä lääkäristä puhutaan silloinkin, kun hän ei ole paikalla. Häntä myös konsultoidaan, tai hänet pyydetään paikalle. Kätilöä ei tarvitse kutsua paikalle, sillä hän on jo läsnä. Kun synnyttäjät kuvailevat hoitohenkilökuntaa, he käyttävät lääkäreistä adjektiiveja reipas, rempseä, sympaattinen ja komea. Kätilöitä kuvataan muun muassa sanoilla ihana, fantastinen, taitava ja huippusympaattinen. Lähes kaikki lääkäri- ja kätilökuvaukset ovat myönteisiä

    Gene expression and epigenetic responses of the marine Cladoceran, Evadne nordmanni, and the copepod, Acartia clausi, to elevated CO2

    Get PDF
    Characterizing the capacity of marine organisms to adapt to climate change related drivers (e.g., pCO2 and temperature), and the possible rate of this adaptation, is required to assess their resilience (or lack thereof) to these drivers. Several studies have hypothesized that epigenetic markers such as DNA methylation, histone modifications and noncoding RNAs, act as drivers of adaptation in marine organisms, especially corals. However, this hypothesis has not been tested in zooplankton, a keystone organism in marine food webs. The objective of this study is to test the hypothesis that acute ocean acidification (OA) exposure alters DNA methylation in two zooplanktonic species—copepods (Acartia clausii) and cladocerans (Evadne nordmanii). We exposed these two species to near-future OA conditions (400 and 900 ppm pCO2) for 24 h and assessed transcriptional and DNA methylation patterns using RNA sequencing and Reduced Representation Bisulfite Sequencing (RRBS). OA exposure caused differential expression of genes associated with energy metabolism, cytoskeletal and extracellular matrix functions, hypoxia and one-carbon metabolism. Similarly, OA exposure also caused altered DNA methylation patterns in both species but the effect of these changes on gene expression and physiological effects remains to be determined. The results from this study form the basis for studies investigating the potential role of epigenetic mechanisms in OA induced phenotypic plasticity and/or adaptive responses in zooplanktonic organisms.publishedVersio

    Report on the scientific eel fishery in Norway in 2017

    Get PDF
    publishedVersio

    Sluttrapport forskningsfangst etter ål (2018) - HI prosjekt 81333

    Get PDF
    Bakgrunn for prosjektet Europeisk ål er en viktig del av kystøkosystemet, spesielt i Sør-Norge. Anguilla anguilla er en katadrom fisk. Det vil si at den gyter i saltvann og vokser opp i ferskvann (gulålstadiet). Imidlertid vokser en god del av ålen som kommer til Norge opp i saltvann langs kysten. Etter gulålstadiet går ålen over i blankålstadiet. Om høsten, mens den fremdeles er seksuelt umoden, starter ålen gytevandringen. Den svømmer da ca. 6000 km for å nå tilbake til Sargassohavet hvor den gyter. I 2007 ble ål inkludert i CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). Den omhandler arter som ikke nødvendigvis er truet av utryddelse, men der handel med arten må kontrolleres for å unngå en utnyttelse som er uforenlig med deres overlevelsesevne (se http://www.cites.org/eng/ plate / how.shtml). Oppføringen ble gjennomført i mars 2009. Etter den ble rødlistet som kritisk truet i Norge, ble alt fiske etter ål forbudt i Norge 1. juli 2009. Dette gjaldt også fritidsfiske. Ålebestanden i Norge har vært overvåket av Havforskningsinstituttet siden 1975. Fangst og innsats ble registrert i dagbøker frem til 2010. En del fiskere fikk dispensasjon til å fiske en gitt mengde ål etter at fiskeforbudet ble innført for at overvåkingen av ål skulle fortsette. På grunn av CITES regulering fikk imidlertid fiskerne problemer omsetningen av ål, da det ble ulovlig å importere ål inn til EU. Forskningsfangsten ble derfor avsluttet i 2010. I 2015 fikk ål en ny vurdering av Artsdatabanken, og ble oppført som VU (sårbar) i den Norske Rødlisten, hvor den hadde stått som CR (kritisk truet) siden 2006. I Fiskeridirektoratets «Handlingsplan 2016» vises det til at det er behov for mer kunnskap om bestandssituasjonen for ål, og at en overvåkningsfangst vil kunne bidra til dette. Det ble da startet et prosjekt med forskningsfangst for å vurdere endringer i lokale bestander. Formålet med prosjektet var å få oversikt over bestanden av Europeisk ål langs norskekysten, og i tillegg øke kunnskapen om biologiske egenskaper som alder ved kjønnsmodning (utvandring til gyteområdet), vekstparametere, parasittbelastning m.m. Denne kunnskapen kan forbedre rådgivningen for denne arten i Norge og bidra til ICES sin vurdering av hele bestanden. Prosjektet bestod av 3 deler: 1) registrering av fangst fra utvalgte fiskere; 2) merkeforsøk; 3) biologisk kunnskapsinnhenting (aldersbestemmelse, vekt, parasittbelastning). Dette er en sluttrapport for 2018 som oppsummerer aktivitetene og resultatene av: overvåkning av ål dette året.publishedVersio

    The three-dimensional prey field of the northern krill, Meganyctiphanes norvegica, and the escape responses of their copepod prey

    Get PDF
    In the north Atlantic, Meganyctiphanes norvegica feeds predominantly on copepods, including Calanus spp. To quantify its perceptual field for prey, and the sensory systems underlying prey detection, the responses of tethered krill to free-swimming Calanus spp. were observed in 3D using silhouette video imaging. An attack–which occurred despite the krill’s being tethered—was characterized by a pronounced movement of the krill’s antennae towards the target, followed by a propulsion and opening of the feeding basket. Frequency distributions of prey detection distances were significantly different in the light vs. the dark, with median values of 26.5 mm and 19.5 mm, respectively. There were no significant differences in the angles at which prey were detected by krill (relative to the predator’s longitudinal body axis) in the light vs. the dark. Prey detections were symmetrically distributed on either side of the predator, in both light and dark. However, significant asymmetry was found in the dorsal–ventral direction with 80% of the prey detections located below the midline of the krill’s body axis and, given the placement and orientation of the compound eyes, presumably outside its visual field of view. This indicates that, at least under these conditions, vision was not the main sensory modality involved in the detection of active prey by M. norvegica. However, under some circumstances, vision may provide supplemental information. Avoidance responses of copepod prey were nearly twice the velocity of their nominal background swimming speed (153 ± 48 and 85 ± 75 mm s−1, respectively), on average taking them 43 ± 16 mm away from the predator. This is far beyond the krill’s perceptual range, suggesting that the escape reaction provides an effective deterrent to predation (although perhaps less so for free-swimming krill). This information can be used to parameterize models that assess the role of krill as predators in marine ecosystems

    A unifying hypothesis for the spawning migrations of temperate anguillid eels

    Get PDF
    Anguillid eels grow in freshwater but spawn in the open ocean. The cues that guide eels over long distances to the spawning area are unknown. The Earth's magnetic field can provide directional and positional information and is likely used by catadromous eels during their spawning migration; as magnetosensitivity and compass orientation have been reported in eels. To test whether this is theoretically possible, we compared the migratory routes of five species of temperate eels that undertake long migrations with the geomagnetic field of their distribution/spawning areas. We found that, regardless of the species and although routes are different between life stages, larvae of those species always drift along paths of increasing magnetic inclination and intensity, while adults follow reverse gradients. This is consistent with an imprinting/retracing hypothesis. We propose a general navigation mechanism based on larvae imprinting on a target magnetic intensity (or inclination) at the hatching area and on the intensity (or inclination) gradient during larval drift. Years later, adults retrace the magnetic route by following the gradient of decreasing total intensity (or inclination) values that occurs towards lower latitudes. As they reach the target value, adults switch to compass orientation to stay on the target isoline and reach the spawning area. The proposed mechanism fits for all temperate eels examined. Knowledge about navigational strategies of eels is important to evaluate the effectiveness of management strategies that involve stocking of juveniles displaced from one area to another to rebuild local populations.publishedVersio

    A biotest system for optimalization of environmental parameters for production of halibut fry

    Get PDF
    A system for controlled testing of different environmental parameters in seawater was made. Both the biotest system and an experimental setup using larvae of the Atlantic Halibut (Hippoglossus hippoglossus L.) are described

    Magnetic fields generated by submarine power cables have a negligible effect on the swimming behavior of Atlantic lumpfish (Cyclopterus lumpus) juveniles

    Get PDF
    Submarine power cables carry electricity over long distances. Their geographic distribution, number, and areal coverage are increasing rapidly with the development of, for example, offshore wind facilities. The flow of current passing through these cables creates a magnetic field (MF) that can potentially affect marine organisms, particularly those that are magnetosensitive. The lumpfish (Cyclopterus lumpus) is a migratory species that is widely distributed in the North Atlantic Ocean and Barents Sea. It migrates between coastal spawning grounds and pelagic offshore feeding areas. We tested whether lumpfish respond to MFs of the same intensity as those emitted by high voltage direct current (HVDC) submarine power cables. Laboratory experiments were conducted by placing juvenile lumpfish in an artificial MF gradient generated by a Helmholtz coil system. The intensity of the artificial MF used (230 µT) corresponded to the field at 1 m from a high-power submarine cable. The fish were filmed for 30 min with the coil either on or off. Swimming speeds, and presence in the different parts of a raceway, were extracted from the videos and analyzed. Juvenile lumpfish activity, defined as the time that the fish spent swimming relative to stationary pauses (attached to the substrate), and the distance travelled, were unaffected by exposure to the artificial MF. The swimming speed of juvenile lumpfish was reduced (by 16%) when the coil was on indicating that the fish could either sense the MF or the induced electric field created by the movement of the fish through the magnetic field. However, it seems unlikely that a 16% decrease in swimming speed occurring within 1 m of HVDC cables would significantly affect Atlantic lumpfish migration or homing.publishedVersio

    Glass eels (Anguilla anguilla) imprint the magnetic direction of tidal currents from their juvenile estuaries

    Get PDF
    The European eel (Anguilla anguilla) hatches in the Sargasso Sea and migrates to European and North African freshwater. As glass eels, they reach estuaries where they become pigmented. Glass eels use a tidal phase-dependent magnetic compass for orientation, but whether their magnetic direction is innate or imprinted during migration is unknown. We tested the hypothesis that glass eels imprint their tidal-dependent magnetic compass direction at the estuaries where they recruit. We collected 222 glass eels from estuaries flowing in different cardinal directions in Austevoll, Norway. We observed the orientation of the glass eels in a magnetic laboratory where the magnetic North was rotated. Glass eels oriented towards the magnetic direction of the prevailing tidal current occurring at their recruitment estuary. Glass eels use their magnetic compass to memorize the magnetic direction of tidal flows. This mechanism could help them to maintain their position in an estuary and to migrate upstream.publishedVersio
    corecore