150 research outputs found

    Diffuse Galactic Soft Gamma-Ray Emission

    Get PDF
    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic Center by the HIREGS balloon-borne germanium spectrometer to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power-law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/CGRO observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient, and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.Comment: 26 pages, 7 figure, submitted to Ap

    Simultaneous EUV and X-ray variability of NGC 4051

    Get PDF
    We present a flux variability study of simultaneous RXTE and EUVE observations of the highly variable Seyfert galaxy NGC4051. We find a strong correlation between variability in the EUV and medium energy X-ray bands,indicating that both are sampling the same power-law continuum. The lag between the two bands is less than 20 ks and, depending on model assumptions, may be <1 ks. We examine the consequences of such a small lag in the context of simple Comptonisation models for the production of the power-law continuum. A lag of <1 ks implies that the size of the Comptonising region is less than 20 Schwarzschild radii for a black hole of mass >1E6 solar masses.Comment: 8 pages, accepted for publication in MNRA

    Biochemical and immunological markers of autoimmune thyroiditis

    Get PDF
    © 2015, Pleiades Publishing, Ltd. Correlations between biochemical and immunological markers of programmed cell death (apoptosis), and the functional state of the thyroid gland (hyperthyroidism, euthyroidism, hypothyroidism) have been investigated in autoimmune thyroiditis (AT) (also known as chronic autoimmune thyroiditis). Annexin V, TRAIL and TNFα, as well as DNA-hydrolyzing antibodies were used as the main markers. Increased levels of TRAIL were found in the serum of AT patients (hyperthyroidism > hypothyroidism > euthyroidism) compared with healthy individuals. The highest frequency of antibodies to denatured DNA (Abs-dDNA) had the highest frequency in AT patients (97%) compared with healthy controls. Among these patients, 75% had hyperthyroidism, 85% had hypothyroidism, and 84.7% had euthyroidism. Abs hydrolyzing activity demonstrated correlation dependence with symptoms of the thyroid dysfunction

    Biochemical &amp; immunological markers of autoimmune thyroiditis

    Get PDF
    Correlations between biochemical and immunological markers of programmed cell death (apoptosis), and the functional state of the thyroid gland (hyperthyroidism, euthyroidism, hypothyroidism) have been investigated in autoimmune thyroiditis (AT) (also known as chronic autoimmune thyroiditis). Annexin V, TRAIL and TNF-α, as well as DNA-hydrolyzing antibodies were used as the main markers. Increased levels of TRAIL were found in the serum of AT patients (hyperthyroidism>hypothyroidism>euthyroidism) compared with healthy individuals. The highest frequency of antibodies to denatured DNA (Abs-dDNA) had the highest frequency in AT patients (97%) compared with healthy controls. Among these patients, 75% had hyperthyroidism, 85% had hypothyroidism, and 84.7% had euthyroidism. Abs hydrolyzing activity demonstrated correlation dependence with symptoms of the thyroid dysfunction

    OSSE Observations of the Soft Gamma Ray Continuum from the Galactic Plane at Longitude 95 Degrees

    Get PDF
    We present the results of OSSE observations of the soft gamma ray continuum emission from the Galactic plane at longitude 95 degrees. Emission is detected between 50 and 600 keV where the spectrum is fit well by a power law with photon index -2.6+-0.3 and flux (4.0+-0.5) 10^{-2} photons/s/cm^2/rad/MeV at 100 keV. This spectral shape in this range is similar to that found for the continuum emission from the inner Galaxy but the amplitude is lower by a factor of four. This emission is either due to unresolved and previously unknown point sources or it is of diffuse origin, or a combination of the two. Simultaneous observations with OSSE and smaller field of view instruments operating in the soft gamma ray energy band, such as XTE or SAX, would help resolve this issue. If it is primarily diffuse emission due to nonthermal electron bremsstrahlung, as is the >1 MeV Galactic ridge continuum, then the power in low energy cosmic ray electrons exceeds that of the nuclear component of the cosmic rays by an order of magnitude. This would have profound implications for the origin of cosmic rays and the energetics of the interstellar medium. Alternatively, if the emission is diffuse and thermal, then there must be a component of the interstellar medium at temperatures near 10^9 K.Comment: 11 pages, Latex, requires AASTEX macros and psfig.tex, 2 postscript figures, Accepted for publication in the Astrophysical Journal Letter

    Measurement Of the Galactic X-ray/Gamma-ray Background Radiation: Contribution of Discrete Sources

    Full text link
    The Galactic background radiation near the Scutum Arm was observed simultaneously with RXTE and OSSE in order to determine the spectral shape and the origin of the emission in the hard X-ray/soft gamma-ray band. The spectrum in the 3 keV to 1 MeV band is well modeled by 4 components: a high energy continuum dominating above 500 keV that can be characterized by a power law of photon index ~ 1.6 (an extrapolation from measurements above ~ 1 MeV); a positron annihilation line at 511 keV and positronium continuum; a variable hard X-ray/soft gamma-ray component that dominates between 10-200 keV (with a minimum detected flux of ~ 7.7 x 10^-7 photons cm^-2 s^-1 keV^-1 deg^-2 at 100 keV averaged over the field of view of OSSE) and that is well modeled by an exponentially cut off power law of photon index ~ 0.6 and energy cut off at ~ 41 keV; and finally a thermal plasma model of solar abundances and temperature of 2.6 keV that dominates below 10 keV. We estimate that the contribution of bright discrete sources to the minimum flux detected by OSSE was ~ 46% at 60 keV and ~ 20% at 100 keV. The remaining unresolved emission may be interpreted either as truly diffuse emission with a hard spectrum (such as that from inverse Compton scattering) or the superposition of discrete sources that have very hard spectra.Comment: Accepted for Publication in the Astrophysical Journa

    Gamma-Ray Spectral States of Galactic Black Hole Candidates

    Full text link
    OSSE has observed seven transient black hole candidates: GRO J0422+32, GX339-4, GRS 1716-249, GRS 1009-45, 4U 1543-47, GRO J1655-40, and GRS 1915+105. Two gamma-ray spectral states are evident and, based on a limited number of contemporaneous X-ray and gamma-ray observations, these states appear to be correlated with X-ray states. The former three objects show hard spectra below 100 keV (photon number indices Gamma < 2) that are exponentially cut off with folding energy ~100 keV, a spectral form that is consistent with thermal Comptonization. This "breaking gamma-ray state" is the high-energy extension of the X-ray low, hard state. In this state, the majority of the luminosity is above the X-ray band, carried by photons of energy ~100 keV. The latter four objects exhibit a "power-law gamma-ray state" with a relatively soft spectral index (Gamma ~ 2.5-3) and no evidence for a spectral break. For GRO J1655-40, the lower limit on the break energy is 690 keV. GRS 1716-249 exhibits both spectral states, with the power-law state having significantly lower gamma-ray luminosity. The power-law gamma-ray state is associated with the presence of a strong ultrasoft X-ray excess (kT ~ 1 keV), the signature of the X-ray high, soft (or perhaps very high) state. The physical process responsible for the unbroken power law is not well understood, although the spectra are consistent with bulk-motion Comptonization in the convergent accretion flow.Comment: 27 pages, 3 figures, uses aaspp.sty and psfig.st
    • 

    corecore