20 research outputs found

    The Hippo Transducer TAZ Interacts with the SWI/SNF Complex to Regulate Breast Epithelial Lineage Commitment

    Full text link
    Lineage-committed cells of many tissues exhibit substantial plasticity in contexts such as wound healing and tumorigenesis, but the regulation of this process is not well understood. We identified the Hippo transducer WWTR1/TAZ in a screen of transcription factors that are able to prompt lineage switching of mammary epithelial cells. Forced expression of TAZ in luminal cells induces them to adopt basal characteristics, and depletion of TAZ in basal and/or myoepithelial cells leads to luminal differentiation. In human and mouse tissues, TAZ is active only in basal cells and is critical for basal cell maintenance during homeostasis. Accordingly, loss of TAZ affects mammary gland development, leading to an imbalance of luminal and basal populations as well as branching defects. Mechanistically, TAZ interacts with components of the SWI/SNF complex to modulate lineage-specific gene expression. Collectively, these findings uncover a new role for Hippo signaling in the determination of lineage identity through recruitment of chromatin-remodeling complexes

    Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation

    Get PDF
    Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1) to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations

    Get PDF
    Seasonal variations in seawater temperature require extensive metabolic acclimatization in cold-blooded organisms inhabiting the coastal waters of Europe. Given the energetic costs of acclimatization, differences in adaptive capacity to climatic conditions are to be expected among distinct populations of species that are distributed over a wide geographic range. We studied seasonal variations in the metabolic adjustments of two very common bivalve taxa at European scale. To this end we sampled 16 populations of Mytilus spp. and 10 Macoma balthica populations distributed from 39° to 69°N. The results from this large-scale comprehensive comparison demonstrated seasonal cycles in metabolic rates which were maximized during winter and springtime, and often reduced in the summer and autumn. Studying the sensitivity of metabolic rates to thermal variations, we found that a broad range of Q10 values occurred under relatively cold conditions. As habitat temperatures increased the range of Q10 narrowed, reaching a bottleneck in southern marginal populations during summer. For Mytilus spp., genetic-group-specific clines and limits on Q10 values were observed at temperatures corresponding to the maximum climatic conditions these geographic populations presently experience. Such specific limitations indicate differential thermal adaptation among these divergent groups. They may explain currently observed migrations in mussel distributions and invasions. Our results provide a practical framework for the thermal ecophysiology of bivalves, the assessment of environmental changes due to climate change and its impact on (and consequences for) aquaculture

    METALOGY: A COMMENTARY ON MIND, RECURSION AND TOPOLOGICAL INFERENCE

    No full text
    © This paper is not for reproduction without the express permission of the author. Alfred Korzybski’s map-territory metaphor and his time-binding notion are presented here as a potential framework for the explanation of the role of recursion in biological processes of cognition. Korzybski’s self-reflexiveness principle is related to Gregory Bateson’s ‘ecology of mind ’ and ‘radical constructiv-ism ’ in the work of Heinz von Foerster and Ernst von Glasersfeld. From this point the author postulates the possibility of metalogy as a recursive, topologically inspired model of the cognition in living sys-tems. Cognition is understood as a self-referential, circular activity whose topological form avoids solip-sism. Subsequently, the article considers the code-duality principle in biosemiotics of Jesper Hoffmeyer and Claus Emmeche. Second order code-duality serves as an explanatory principle for self-as-other-coding, where a ‘self ’ is being established in ontogeny as a form of a dynamic stability of self- and other-reference on different logical levels, thus confirming the central role of recursion in the biological processes of cognitive development. Metalogy: In-formation (organized complexity) could be considered an outcome of recursive processes of constructing and stabilizing of our own activities, which, in turn, serve for developing equilibratio

    Cell Fate Decisions During Breast Cancer Development

    No full text
    During the formation of breast cancer, many genes become altered as cells evolve progressively from normal to a pre-malignant to a malignant state of growth. How mutations in genes lead to specific subtypes of human breast cancer is only partially understood. Here we review how initial genetic or epigenetic alterations within mammary epithelial cells (MECs) can alter cell fate decisions and put pre-malignant cells on a path towards cancer development with specific phenotypes. Understanding the early stages of breast cancer initiation and progression and how normal developmental processes are hijacked during transformation has significant implications for improving early detection and prevention of breast cancer. In addition, insights gleaned from this understanding may also be important for developing subtype-specific treatment options
    corecore