174 research outputs found

    Postprandial molecular responses in the liver of the barramundi, Lates calcarifer

    Get PDF
    The regulation of gene expression by nutrients is an important mechanism governing energy storage and growth in most animals, including fish. At present, very few genes that regulate intermediary metabolism have been identified in barramundi, nor is there any understanding of their nutritional regulation. In this study, a partial barramundi liver transcriptome was assembled from next-generation sequencing data and published barramundi EST sequences. A large number of putative metabolism genes were identified in barramundi, and the changes in the expression of 24 key metabolic regulators of nutritional pathways were investigated in barramundi liver over a time series immediately after a meal of a nutritionally optimised diet for this species. Plasma glucose and free amino acid levels showed a mild postprandial elevation which peaked 2 h after feeding, and had returned to basal levels within 4 or 8 h, respectively. Significant activation or repression of metabolic nuclear receptor regulator genes were observed, in combination with activation of glycolytic and lipogenic pathways, repression of the final step of gluconeogenesis and activation of the Akt-mTOR pathway. Strong correlations were identified between a number of different metabolic genes, and the coordinated co-regulation of these genes may underlie the ability of this fish to utilise dietary nutrients. Overall, these data clearly demonstrate a number of unique postprandial responses in barramundi compared with other fish species and provide a critical step in defining the response to different dietary nutrient sources

    Dietary starch promotes hepatic lipogenesis in barramundi (Lates calcarifer)

    Get PDF
    Barramundi (Lates calcarifer) are a highly valued aquaculture species, and, as obligate carnivores, they have a demonstrated preference for dietary protein over lipid or starch to fuel energetic growth demands. In order to investigate how carnivorous fish regulate nutritional cues, we examined the metabolic effects of feeding two isoenergetic diets that contained different proportions of digestible protein or starch energy. Fish fed a high proportion of dietary starch energy had a higher proportion of liver SFA, but showed no change in plasma glucose levels, and few changes in the expression of genes regulating key hepatic metabolic pathways. Decreased activation of the mammalian target of rapamycin growth signalling cascade was consistent with decreased growth performance values. The fractional synthetic rate (lipogenesis), measured by TAG 2H-enrichment using 2H NMR, was significantly higher in barramundi fed with the starch diet compared with the protein diet (0·6 (se 0·1) v. 0·4 (se 0·1) % per d, respectively). Hepatic TAG-bound glycerol synthetic rates were much higher than other closely related fish such as sea bass, but were not significantly different (starch, 2·8 (se 0·3) v. protein, 3·4 (se 0·3) % per d), highlighting the role of glycerol as a metabolic intermediary and high TAG-FA cycling in barramundi. Overall, dietary starch significantly increased hepatic TAG through increased lipogenesis. Compared with other fish, barramundi possess a unique mechanism to metabolise dietary carbohydrates and this knowledge may define ways to improve performance of advanced formulated feeds

    miRNA-122 et régulation nutritionnelle et hormonale chez la truite

    No full text
    National audienceLes microARNs sont des ARN non codants simple brin de petite taille (20-22 nucléotides) impliqués dans la régulation post-transcriptionnelle de l’expression des gènes. Ils agissent par le biais d’appariements avec des séquences cibles situées dans les régions 3’ non traduites des ARNm cibles pour promouvoir la dégradation de l’ARNm et/ou inhiber sa traduction en protéine. Ainsi, les microARNs participent à la régulation de multiples processus biologiques liés au développement, à la différenciation cellulaire ou encore au métabolisme. L’implication des microARNs dans la régulation du métabolisme a principalement été établie à partir de situations pathologiques mais leur rôle dans la régulation des gènes du métabolisme en situation physiologique normale reste en grande partie à élucider. Nous avons donc cherché à établir le rôle joué par les microARN dans la régulation nutritionnelle des gènes du métabolisme chez la truite arc-en-ciel afin de mieux comprendre comment les nutriments contrôlent les voies métaboliques chez les poissons. Ces informations pourront être importantes pour optimiser l'utilisation des nouveaux aliments aquacoles économes en ressources marines par les poissons. Sur la base du répertoire de microARNs de truite publié en 2009 par Salem et coll. et des homologies de séquence entre microARNs de mammifères et d’autres espèces de poissons, nous avons montré que l’expression postprandiale de certains microARNs, connus pour leur implication dans le contrôle de l’expression des gènes du métabolisme ou leur action sur la voie de signalisation de l’insuline, était contrôlée par la réalimentation chez la truite arc-en-ciel. La mise en parallèle des données de signalisation, d’expression de gènes et de microARNs a suggéré une forte implication des microARNs (miR122, 103, 107) dans la régulation du métabolisme postprandial de la truite. Mennigen et al., PlosOne, 2012. Nous nous sommes ensuite intéressés plus particulièrement à la régulation de l’expression des miR122 et 33 dont l’implication dans le contrôle du métabolisme lipidique est clairement établie chez les mammifères. Nous avons montré que l’insuline induisait l’expression des miR122b et 33 et celle des gènes lipogéniques SREBP et FAS (fatty acid synthase). Une expression plus faible du miR122b et de la FAS a également observée chez les poissons nourris avec un aliment riche en lipides. Ces résultats semblent donc confirmer le rôle lipogénique des miR122 et 33 chez la truite. Article en préparation. Enfin, en choisissant des étapes stratégiques de l’alimentation de la truite, nous avons démontré que l’expression de certains microARNs était modifiée lors du passage de l’alimentation strictement endogène (utilisation exclusive des ressources vitellines) à l’alimentation exclusivement exogène. L’expression de ces microARNs semble fortement corrélée à l’utilisation des ressources énergétiques exogènes comme l’illustre l’augmentation de l’expression du miR143 et l’inhibition concomitante de l’expression du gène abdh5, cible directe du miR143 et facteur impliqué dans l’hydrolyse des triglycérides

    Intérêt des microalgues en alimentation des poissons

    No full text
    WebinaireNational audienc

    Nutrition animale

    No full text
    International audienc

    Ontogenetic expression of metabolic genes and microRNAs in rainbow trout alevins during the transition from the endogenous to the exogenous feeding period

    No full text
    International audienceAs oviparous fish, rainbow trout change their nutritional strategy during ontogenesis. This change is divided into the exclusive utilization of yolk-sac reserves (endogenous feeding), the concurrent utilization of yolk reserves and exogenous feeds (mixed feeding) and the complete dependence on external feeds (exogenous feeding). The change in food source is accompanied by well-characterized morphological changes, including the development of adipose tissue as an energy storage site, and continuous muscle development to improve foraging. The aim of this study was to investigate underlying molecular mechanisms that contribute to these ontogenetic changes between the nutritional phenotypes in rainbow trout alevins. We therefore analyzed the expression of marker genes of metabolic pathways and microRNAs (miRNAs) important in the differentiation and/or maintenance of metabolic tissues. In exogenously feeding alevins, the last enzyme involved in glucose production (g6pca and g6pcb) and lipolytic gene expression (cpt1a and cpt1b) decreased, while that of gk, involved in hepatic glucose use, was induced. This pattern is consistent with a progressive switch from the utilization of stored (gluconeogenic) amino acids and lipids in endogenously feeding alevins to a utilization of exogenous feeds via the glycolytic pathway. A shift towards the utilization of external feeds is further evidenced by the increased expression of omy-miRNA-143, a homologue of the mammalian marker of adipogenesis. The expression of its predicted target gene abhd5, a factor in triglyceride hydrolysis, decreased concurrently, suggesting a potential mechanism in the onset of lipid deposition. Muscle-specific omy-miRNA-1/133 and myod1 expression decreased in exogenously feeding alevins, a molecular signature consistent with muscle hypertrophy, which may be linked to nutritional cues or increased foragin

    La prolactine, ses récepteurs et ses actions biologiques

    No full text
    chap. 6National audienc

    Vers une meilleure utilisation des glucides par les poissons d’élevage : programmation métabolique des truites lors du premier repas

    No full text
    National audienceDans le contexte de l’aquaculture durable, le développement de nouveaux aliments à base de végétaux pour les poissons d’élevage est un objectif incontournable. Les salmonidés ont des difficultés à utiliser les glucides alimentaires au niveau métabolique. Afin d’améliorer l’utilisation de ce macronutriment, nous avons mis en place une stratégie alimentaire innovante basée sur la programmation nutritionnelle, concept dans lequel la nutrition précoce est utilisée comme base d’adaptation métabolique des animaux à de nouveaux aliments. Il s’agissait de soumettre l’alevin à un stress nutritionnel dès son premier repas, afin de modifier son métabolisme de façon permanente chez l’adulte en espérant améliorer son efficacité d’utilisation des glucides alimentaires. Nous avons travaillé avec un aliment « stress » composé d’un mélange d’amidon et de glucose et ceci pendant une durée de traitement courte (5 jours à partir du premier repas) afin d’induire un stimulus hyperglycémique aigu chez l’alevin

    La leptine chez le poulet

    No full text
    National audienceLeptin in chicken. In poultry, whole-body energy homeostasis control is economically essential, since poultry selection for growth is associated with an increased body fat storage. In mammals, leptin is involved in the regulation of food intake and body energy expenditure. In chicken, this hormone may play a similar role. In chicken, the leptin gene is expressed not only by adipose tissue but especially by the liver. Hepatic expression of leptin in the chicken is most likely associated with the almost exclusive role played by this organ in lipogenesis. As in mammals, chicken leptin level reflects body fat store and the expression of this hormone may be regulated by the nutritional status of the animal and composition of its diet. Acting probably on a receptor located in the hypothalamus, leptin inhibits food intake of chicken. Modulated by several factors also involved in the regulation of food intake and energy expenditure in the chicken, leptin effects,seem to be similar in chicken and mammalian species.Chez les volailles, le contrôle du bilan énergétique représente un enjeu économique majeur dans la mesure où la sélection des espèces aviaires sur la vitesse de croissance s’est accompagnée d’un développement excessif de l’engraissement. Connue chez les mammifères pour son action sur le contrôle de la prise alimentaire et de la dépense énergétique, la leptine pourrait également jouer un rôle important dans le contrôle du bilan énergétique des volailles. Chez le poulet, la leptine est exprimée dans le tissu adipeux mais surtout dans le foie. Cette expression hépatique est probablement à mettre en relation avec le rôle joué par cet organe dans la lipogenèse chez les volailles. Comme chez les mammifères, la leptine reflète l’adiposité du poulet et l’expression de la leptine peut être régulée par l’état nutritionnel ou la composition du régime alimentaire. La leptine inhibe la prise alimentaire en agissant probablement sur des récepteurs situés au niveau de l’hypothalamus. Modulée par de nombreuses hormones impliquées dans le contrôle de la prise alimentaire et des réserves énergétiques, les effets de la leptine chez le poulet semblent être similaires à ceux décrits chez les mammifères
    corecore