27 research outputs found

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987

    Origin and distribution of the brachial plexus of the Van cats.

    No full text
    AbstractKnowing the structure and variations of the plexus brachialis is important in neck and shoulder surgery. The knowledge of the brachial plexus reduces the injury rate of the nerves in surgical interventions to the axillary region. The major nerve trunks of the thoracic limb were the suprascapular, subscapular, axillary, radial, musculocutaneous, median and ulnar nerves. In Van cats, the brachial plexus was formed by the ventral branches of the spinal nerves, C6-C7-C8 and T1. The 7th cervical nerve was quite thick compared to the others. The subscapular nerve was the thinnest (on the right side, the average length was 6.55 ± 0.60 mm and on the left side was 6.50 ± 0.60 mm), and the radial nerve was the thickest (the average length on the right side was 28.48 ± 0.44 mm and on the left side was 29.11 ± 0.55 mm). The suprascapular nerve was formed by the ventral branch of the 6th cervical nerve. The subscapular nerves were formed by a branch originating from the 6th cervical nerve and the two medial and caudal branches originating from the 7th cervical nerve. No communicating branch between the ulnar nerve and the median nerve was observed in the palmar region. The axillary nerve was formed by the ventral branches of the 7th nerve, the musculocutaneous nerve was formed by ventral branches of the 6th and 7th cervical nerves, and the ulnar nerve was formed by ventral branches of the 8th cervical and the 1st thoracic nerves. The radial nerve was the thickest branch in the brachial plexus. In Van cats, the origin and distribution of nerves were similar to those reported in the literature for other species of cats, with the exception of the suprascapular, subscapular and axillary nerves.KEYWORDSbrachial plexus, nerves, thoracic limb, Van cat</p
    corecore