206 research outputs found

    Polystyrene cryostat facilitates testing tensile specimens under liquid nitrogen

    Get PDF
    Lightweight cryostat made of expanded polystyrene reduces eccentricity in a tensile system being tested under liquid nitrogen. The cryostat is attached directly to the tensile system by a special seal, reducing misalignment effects due to cryostat weight, and facilitates viewing and loading of the specimens

    Tensile testing grips are easily assembled under liquid nitrogen

    Get PDF
    Split-screw grips for tensile testing provide uniform loading on the specimen shoulders. Holes in the heads enable the screws and specimen to be threaded as an assembly into a grip body, closely controlled guides and seats afford positive seating, and precision machining of mating surfaces minimizes misalignment effects

    Test system accurately determines tensile properties of irradiated metals at cryogenic temperatures

    Get PDF
    Modified testing system determines tensile properties of irradiated brittle-type metals at cryogenic temperatures. The system includes a lightweight cryostat, split-screw grips, a universal joint, and a special temperature control system

    The PER model of abstract non-interference

    Get PDF
    Abstract. In this paper, we study the relationship between two models of secure information flow: the PER model (which uses equivalence relations) and the abstract non-interference model (which uses upper closure operators). We embed the lattice of equivalence relations into the lattice of closures, re-interpreting abstract non-interference over the lattice of equivalence relations. For narrow abstract non-interference, we show non-interference it is strictly less general. The relational presentation of abstract non-interference leads to a simplified construction of the most concrete harmless attacker. Moreover, the PER model of abstract noninterference allows us to derive unconstrained attacker models, which do not necessarily either observe all public information or ignore all private information. Finally, we show how abstract domain completeness can be used for enforcing the PER model of abstract non-interference

    Bayesian modeling of recombination events in bacterial populations

    Get PDF
    Background: We consider the discovery of recombinant segments jointly with their origins within multilocus DNA sequences from bacteria representing heterogeneous populations of fairly closely related species. The currently available methods for recombination detection capable of probabilistic characterization of uncertainty have a limited applicability in practice as the number of strains in a data set increases. Results: We introduce a Bayesian spatial structural model representing the continuum of origins over sites within the observed sequences, including a probabilistic characterization of uncertainty related to the origin of any particular site. To enable a statistically accurate and practically feasible approach to the analysis of large-scale data sets representing a single genus, we have developed a novel software tool (BRAT, Bayesian Recombination Tracker) implementing the model and the corresponding learning algorithm, which is capable of identifying the posterior optimal structure and to estimate the marginal posterior probabilities of putative origins over the sites. Conclusion: A multitude of challenging simulation scenarios and an analysis of real data from seven housekeeping genes of 120 strains of genus Burkholderia are used to illustrate the possibilities offered by our approach. The software is freely available for download at URL http://web.abo.fi/fak/ mnf//mate/jc/software/brat.html

    Comparison of metal-dependent catalysis by HIV-1 and ASV integrase proteins using a new and rapid, moderate throughput assay for joining activity in solution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 integrase (IN) is an attractive target for the development of drugs to treat AIDS, and inhibitors of this viral enzyme are already in the clinic. Nevertheless, there is a continuing need to devise new approaches to block the activity of this viral protein because of the emergence of resistant strains. To facilitate the biochemical analysis of wild-type IN and its derivatives, and to measure the potency of prospective inhibitory compounds, a rapid, moderate throughput solution assay was developed for IN-catalyzed joining of viral and target DNAs, based on the detection of a fluorescent tag.</p> <p>Results</p> <p>A detailed, step-by-step description of the new joining assay is provided. The reactions are run in solution, the products captured on streptavidin beads, and activity is measured by release of a fluorescent tag. The procedure can be scaled up for the analysis of numerous samples, and is substantially more rapid and sensitive than the standard radioactive gel methods. The new assay is validated and its utility demonstrated via a detailed comparison of the Mg<sup>++</sup>- and Mn<sup>++</sup>-dependent activities of the IN proteins from human immunodeficiency virus type 1 (HIV-1) and the avian sarcoma virus (ASV). The results confirm that ASV IN is considerably more active than HIV-1 IN, but with both enzymes the initial rates of joining, and the product yields, are higher in the presence of Mn<sup>++ </sup>than Mg<sup>++</sup>. Although the pH optima for these two enzymes are similar with Mn<sup>++</sup>, they differ significantly in the presence of Mg<sup>++</sup>, which is likely due to differences in the molecular environment of the binding region of this physiologically relevant divalent cation. This interpretation is strengthened by the observation that a compound that can inhibit HIV-1 IN in the presence of either metal cofactors is only effective against ASV in the presence of Mn<sup>++</sup>.</p> <p>Conclusion</p> <p>A simplified, assay for measuring the joining activity of retroviral IN in solution is described, which offers several advantages over previous methods and the standard radioactive gel analyses. Based on comparisons of signal to background ratios, the assay is 10–30 times more sensitive than gel analysis, allows more rapid and accurate biochemical analyses of IN catalytic activity, and moderate throughput screening of inhibitory compounds. The assay is validated, and its utility demonstrated in a comparison of the metal-dependent activities of HIV-1 and ASV IN proteins.</p

    Absent expansion of AXIN2+ hepatocytes and altered physiology in Axin2CreERT2 mice challenges the role of pericentral hepatocytes in homeostatic liver regeneration

    Get PDF
    Background &amp; Aims: Mouse models of lineage tracing have helped to describe the important subpopulations of hepatocytes responsible for liver regeneration. However, conflicting results have been obtained from different models. Herein, we aimed to reconcile these conflicting reports by repeating a key lineage-tracing study from pericentral hepatocytes and characterising this Axin2CreERT2 model in detail. Methods: We performed detailed characterisation of the labelled population in the Axin2CreERT2 model. We lineage traced this cell population, quantifying the labelled population over 1 year and performed in-depth phenotypic comparisons, including transcriptomics, metabolomics and analysis of proteins through immunohistochemistry, of Axin2CreERT2 mice to WT counterparts. Results: We found that after careful definition of a baseline population, there are marked differences in labelling between male and female mice. Upon induced lineage tracing there was no expansion of the labelled hepatocyte population in Axin2CreERT2 mice. We found substantial evidence of disrupted homeostasis in Axin2CreERT2 mice. Offspring are born with sub-Mendelian ratios and adult mice have perturbations of hepatic Wnt/β-catenin signalling and related metabolomic disturbance. Conclusions: We find no evidence of predominant expansion of the pericentral hepatocyte population during liver homeostatic regeneration. Our data highlight the importance of detailed preclinical model characterisation and the pitfalls which may occur when comparing across sexes and backgrounds of mice and the effects of genetic insertion into native loci. Impact and implications: Understanding the source of cells which regenerate the liver is crucial to harness their potential to regrow injured livers. Herein, we show that cells which were previously thought to repopulate the liver play only a limited role in physiological regeneration. Our data helps to reconcile differing conclusions drawn from results from a number of prior studies and highlights methodological challenges which are relevant to preclinical models more generally

    Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes

    Get PDF
    Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological advantage to the species. In addition, the viruses could also benefit, as some resistant species (e.g. bats) may serve as natural reservoirs for their persistence and transmission. Given the stringent limitations imposed in this informatics search, the examples described here should be considered a low estimate of the number of such integration events that have persisted over evolutionary time scales. Clearly, the sources of genetic information in vertebrate genomes are much more diverse than previously suspected

    Intasome architecture and chromatin density modulate retroviral integration into nucleosome

    Get PDF
    BACKGROUND: Retroviral integration depends on the interaction between intasomes, host chromatin and cellular targeting cofactors as LEDGF/p75 or BET proteins. Previous studies indicated that the retroviral integrase, by itself, may play a role in the local integration site selection within nucleosomal target DNA. We focused our study on this local association by analyzing the intrinsic properties of various retroviral intasomes to functionally accommodate different chromatin structures in the lack of other cofactors. RESULTS: Using in vitro conditions allowing the efficient catalysis of full site integration without these cofactors, we show that distinct retroviral integrases are not equally affected by chromatin compactness. Indeed, while PFV and MLV integration reactions are favored into dense and stable nucleosomes, HIV-1 and ASV concerted integration reactions are preferred into poorly dense chromatin regions of our nucleosomal acceptor templates. Predicted nucleosome occupancy around integration sites identified in infected cells suggests the presence of a nucleosome at the MLV and HIV-1 integration sites surrounded by differently dense chromatin. Further analyses of the relationships between the in vitro integration site selectivity and the structure of the inserted DNA indicate that structural constraints within intasomes could account for their ability to accommodate nucleosomal DNA and could dictate their capability to bind nucleosomes functionally in these specific chromatin contexts. CONCLUSIONS: Thus, both intasome architecture and compactness of the chromatin surrounding the targeted nucleosome appear important determinants of the retroviral integration site selectivity. This supports a mechanism involving a global targeting of the intasomes toward suitable chromatin regions followed by a local integration site selection modulated by the intrinsic structural constraints of the intasomes governing the target DNA bending and dictating their sensitivity toward suitable specific nucleosomal structures and density
    • …
    corecore