22 research outputs found
Phenotype and genotype of concurrent keratoconus and Fuchs endothelial corneal dystrophy
PURPOSE: To characterise the phenotype and genotype of concurrent keratoconus and Fuchs endothelial corneal dystrophy (KC + FECD). METHODS: We recruited 20 patients with concurrent KC + FECD for a retrospective observational case series from the United Kingdom and the Czech Republic. We compared eight parameters of corneal shape (Pentacam, Oculus) with two groups of age-matched controls who had either isolated keratoconus (KC) or isolated FECD. We genotyped probands for an intronic triplet TCF4 repeat expansion (CTG18.1) and the ZEB1 variant c.1920G >T p.(Gln640His). RESULTS: The median age at diagnosis of patients with KC + FECD was 54 (interquartile range 46 to 66) years, with no evidence of KC progression (median follow-up 84 months, range 12 to 120 months). The mean (standard deviation (SD)) of the minimum corneal thickness, 493 (62.7) μm, was greater than eyes with KC, 458 (51.1) μm, but less than eyes with FECD, 590 (55.6) μm. Seven other parameters of corneal shape were more like KC than FECD. Seven (35%) probands with KC + FECD had a TCF4 repeat expansion of ≥50 compared to five controls with isolated FECD. The average of the largest TCF4 expansion in cases with KC + FECD (46 repeats, SD 36 repeats) was similar to the age-matched controls with isolated FECD (36 repeats, SD 28 repeats; p = 0.299). No patient with KC + FECD harboured the ZEB1 variant. CONCLUSIONS: The KC + FECD phenotype is consistent with KC but with superimposed stromal swelling from endothelial disease. The proportion of cases with a TCF4 expansion is similar in concurrent KC + FECD and age-matched controls with isolated FECD
Deciphering novel TCF4-driven mechanisms underlying a common triplet repeat expansion-mediated disease
Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency 15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease
A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus
Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease
Presence of Protease Inhibitor 9 and Granzyme B in Healthy and Pathological Human Corneas
The aim of this study was to find out whether protease inhibitor 9 (PI-9) and granzyme B (GrB) molecules that contribute to immune response and the immunological privilege of various tissues are expressed in healthy and pathological human corneas. Using cryosections, cell imprints of control corneoscleral discs, we showed that PI-9 was expressed particularly in the endothelium, the superficial and suprabasal epithelium of healthy corneas, limbus, and conjunctiva. GrB was localized in healthy corneal and conjunctival epithelium, while the endothelium showed weak immunostaining. The expression of PI-6 and GrB was confirmed by qRT-PCR. Increased expression levels of the PI-9 and GrB genes were determined when the corneas were cultured with proinflammatory cytokines. Fluorescent and enzymatic immunohistochemistry of pathological corneal explants (corneal melting and herpes virus keratitis) showed pronounced PI-9, GrB, human leucocyte antigen (HLA)-DR, and leukocyte-common antigen (CD45) signals localized in multicellular stromal infiltrates and inflammatory cells scattered in the corneal stroma. We conclude that increased expression of the PI-9 and GrB proteins under pathological conditions and their upregulation in an inflammatory environment indicate their participation in immune response of the cornea during the inflammatory process
Analysis of KERA in four families with cornea plana identifies two novel mutations
Purpose: To identify the molecular genetic cause in four families of various ethnic backgrounds with cornea plana. Methods: Detailed ophthalmological examination and direct sequencing of the KERA coding region in five patients of Czech and Turkish origin and their available family members. Results: Compound heterozygosity for a novel missense mutation c.209C>T; p.(Pro70Leu) and a novel splice site mutation c.887-1G>A in KERA were detected in two affected siblings of Czech origin. In silico analysis supported the pathogenicity of both variants. The second proband of Czech origin harboured c.835C>T; p.(Arg279*) in a homozygous state. Homozygous mutations c.740A>G; p.(Asn247Ser) and c.674C>T; p.(Ile225Thr) were identified in the Turkish probands, both born out of consanguineous marriages. Observed ocular phenotypes were typical of cornea plana with the exception of one Czech patient who also had marked thinning and protrusion in the superior part of the left cornea (mean keratometry 47.2 D). No corneal endothelial cell pathology was found by specular microscopy in seven eyes, in three eyes visualization of the posterior corneal surface was unsuccessful. Conclusion: KERA mutation c.740A>G has been identified to date in three different populations, which makes it the most frequently occurring mutation in patients with cornea plana. Marked corneal thinning and ectasia are a very rare finding in this disorder and longitudinal follow-up needs to be performed to determine its potential progressive nature.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel PRSS56 Variant
Background. The aim of the study was to identify the molecular genetic cause of two different Mendelian traits with ocular involvement present in the members of a single consanguineous Czech Roma family. Methods. We have performed ocular examination and review of medical records in two individuals diagnosed with nanophthalmos (proband and her father) and one individual followed for bilateral congenital cataract and microcornea (uncle of the proband). DNA of subjects with nanophthalmos was analysed by exome sequencing. Sanger sequencing was applied for targeted screening of potentially pathogenic variants and to follow segregation of identified variants within the family. Results. A homozygous variant c.1509G>C; p.(Met503Ile), in PRSS56 was found in the two individuals affected with nanophthalmos. The change was absent from the gnomAD dataset, but two out of 118 control Roma individuals were also shown to be heterozygous carriers. Analysis of single nucleotide polymorphisms in linkage disequilibrium with the c.1509G>C in PRSS56 suggested a shared chromosomal segment. The nanophthalmos phenotype, characterized in detail in the younger individual, encompassed bilateral corneal steepening, retinal folds, buried optic head drusen, and restricted visual fields, but no signs of retinal dystrophy. A known pathogenic founder CTDP1 variant c.863+389C>T in a homozygous state was identified in the other family member confirming the suspected diagnosis of congenital cataracts, facial dysmorphism, and demyelinating neuropathy syndrome. Conclusions. Herein, we report the first occurrence of nanophthalmos in the Roma population. We have identified pseudodominant inheritance for this phenotype caused by a novel variant in PRSS56, representing a possible founder effect. Despite advances in genetic technologies such as exome sequencing, careful phenotype evaluation in patients from an isolated population, along with an awareness of population-specific founder effects, is necessary to ensure that accurate molecular diagnoses are made
Active transforming growth factor-β2 in the aqueous humor of posterior polymorphous corneal dystrophy patients
<div><p>Purpose</p><p>Posterior polymorphous corneal dystrophy (PPCD) is characterized by abnormal proliferation of corneal endothelial cells. It was shown that TGF-β2 present in aqueous humor (AH) could help maintaining the corneal endothelium in a G1-phase-arrest state. We wanted to determine whether the levels of this protein are changed in AH of PPCD patients.</p><p>Methods</p><p>We determined the concentrations of active TGF-β2 in the AH of 29 PPCD patients (42 samples) and 40 cadaver controls (44 samples) by ELISA. For data analysis the PPCD patients were divided based on either the molecular genetic cause of their disease as PPCD1 (37 samples), PPCD3 (1 sample) and PPCDx (not linked to a known PPCD loci, 4 samples) or on the presence (17 samples) or absence (25 samples) of secondary glaucoma or on whether they had undergone penetrating keratoplasty (PK, 32 samples) or repeated PK (rePK, 7 samples).</p><p>Results</p><p>The level of active TGF-β2 in the AH of all PPCD patients (mean ± SD; 386.98 ± 114.88 pg/ml) in comparison to the control group (260.95 ± 112.43 pg/ml) was significantly higher (<i>P</i> = 0.0001). Compared to the control group, a significantly higher level of active TGF-β2 was found in the PPCD1 (<i>P</i> = 0.0005) and PPCDx (<i>P</i> = 0.0022) groups. Among patients the levels of active TGF-β2 were not significantly affected by gender, age, secondary glaucoma or by the progression of dystrophy when one or repeated PK were performed.</p><p>Conclusion</p><p>The levels of active TGF-β2 in the AH of PPCD patients are significantly higher than control values, and thus the increased levels of TGF-β2 could be a consequence of the PPCD phenotype and can be considered as another feature characterizing this disease.</p></div
Snail Track Lesion with Flat Keratometry in Anterior Segment Dysgenesis Caused by a Novel FOXC1 Variant
We report the phenotype of a 15-year-old female patient with anterior segment dysgenesis (ASD) caused by a novel heterozygous loss-of-function FOXC1 variant. The proband underwent an ophthalmic examination as well as a molecular genetic investigation comprising exome sequencing, a single nucleotide polymorphism array to access copy number and Sanger sequencing to exclude non-coding causal variants. There was bilateral mild iris hypoplasia with pupil deformation and iridocorneal adhesions. In addition to these features of ASD, the corneas were flat, with mean keratometry readings of 38.8 diopters in the right eye and 39.5 diopters in the left eye. There was a snail track lesion of the left cornea at the level of the Descemet membrane. The central corneal endothelial cell density was reduced bilaterally at 1964 and 1373 cells/mm2 in the right and left eyes, respectively. Molecular genetic analysis revealed that the proband was a carrier of a novel heterozygous frameshifting variant in FOXC1, c.605del p.(Pro202Argfs*113). Neither parent had this change, suggesting a de novo origin which was supported by paternity testing. We found no possibly pathogenic variants in the other genes associated with posterior corneal dystrophies or ASD. Further studies are warranted to verify whether there is a true association between snail track lesions, corneal flattening, and pathogenic variants in FOXC1