67 research outputs found

    Should patients with kearns-sayre syndrome and corneal endothelial failure be genotyped for a TCF4 trinucleotide repeat, commonly associated with fuchs endothelial corneal dystrophy?

    Get PDF
    The aim of this study was to describe the ocular phenotype in a case with Kearns-Sayre syndrome (KSS) spectrum and to determine if corneal endothelial cell dysfunction could be attributed to other known distinct genetic causes. Herein, genomic DNA was extracted from blood and exome sequencing was performed. Non-coding gene regions implicated in corneal endothelial dystrophies were screened by Sanger sequencing. In addition, a repeat expansion situated within an intron of TCF4 (termed CTG18.1) was genotyped using the short tandem repeat assay. The diagnosis of KSS spectrum was based on the presence of ptosis, chronic progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss, and muscle weakness, which were further supported by the detection of ~6.5 kb mtDNA deletion. At the age of 33 years, the proband’s best corrected visual acuity was reduced to 0.04 in the right eye and 0.2 in the left eye. Rare ocular findings included marked corneal oedema with central corneal thickness of 824 and 844 µm in the right and left eye, respectively. No pathogenic variants in the genes, which are associated with corneal endothelial dystrophies, were identified. Furthermore, the CTG18.1 genotype was 12/33, which exceeds a previously determined critical threshold for toxic RNA foci appearance in corneal endothelial cells

    Metabolic profiling of Ochradenus baccatus Delile. utilizing UHPLC-HRESIMS in relation to the in vitro biological investigations

    Get PDF
    Ochradenus baccatus Delile (Resedaceae) is a desert plant with edible fruits native to the Middle East. Few investigators have reported antibacterial, antiparasitic and anti-cancer activities of the plant. Herein we evaluated the cytotoxic activity of O. baccatus using four cell lines and a zebrafish embryo model. Additionally, liquid chromatography coupled with mass spectroscopy was performed to characterize the extract’s main constituents. The highest cytotoxicity was observed against human cervical adenocarcinoma (HeLa), with CC50 of 39.1 μg/mL and a selectivity index (SI) of 7.23 (p < 0.01). Metabolic analysis of the extract resulted in the annotation of 57 metabolites, including fatty acids, flavonoids, glucosinolates, nitrile glycosides, in addition to organic acids. The extract showed an abundance of hydroxylated fatty acids (16 peaks). Further, 3 nitrile glycosides have been identified for the first time in Ochradenus sp., in addition to 2 glucosinolates. These identified phytochemicals may partially explain the cytotoxic activity of the extract. We propose O. baccatus as a possible safe food source for further utilization to partially contribute to the increasing food demand specially in Saharan countries.Medical University of Lublin | Ref. DS28Universidade de Vigo/CISU

    Molecular targets of curcumin for cancer therapy: An updated review

    Get PDF
    In recent years, natural edible products have been found to be important therapeutic agents for the treatment of chronic human diseases including cancer, cardiovascular disease, and neurodegeneration. Curcumin is a well-known diarylheptanoid constituent of turmeric which possesses anticancer effects under both pre-clinical and clinical conditions. Moreover, it is well known that the anticancer effects of curcumin are primarily due to the activation of apoptotic pathways in the cancer cells as well as inhibition of tumor microenvironments like inflammation, angiogenesis, and tumor metastasis. In particular, extensive studies have demonstrated that curcumin targets numerous therapeutically important cancer signaling pathways such as p53, Ras, PI3K, AKT, Wnt-β catenin, mTOR and so on. Clinical studies also suggested that either curcumin alone or as combination with other drugs possess promising anticancer effect in cancer patients without causing any adverse effects. In this article, we critically review the available scientific evidence on the molecular targets of curcumin for the treatment of different types of cancer. In addition, we also discuss its chemistry, sources, bioavailability, and future research directions. © International Society of Oncology and BioMarkers (ISOBM) 2016

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae)

    Get PDF
    We investigate the timing of diversification in allopolyploids of Nicotiana (Solanaceae) utilising sequence data of maternal and paternal origin to look for evidence of a lag phase during which diploidisation took place. Bayesian relaxed clock phylogenetic methods show recent allopolyploids are a result of several unique polyploidisation events, and older allopolyploid sections have undergone subsequent speciation at the polyploid level (i.e. a number of these polyploid species share a singular origin). The independently formed recent polyploid species in the genus all have mean age estimates below 1 million years ago (Ma). Nicotiana  section Polydicliae (two species) evolved 1.5 Ma, N. section Repandae (four species) formed 4 Ma, and N. section Suaveolentes (*35 species) is about 6 million years old. A general trend of higher speciation rates in older polyploids is evident, but diversification dramatically increases at approximately 6 Ma (in section Suaveolentes). Nicotiana sect. Suaveolentes has spectacularly radiated to form 35 species in Australia and some Pacific islands following a lag phase of almost 6 million years. Species have filled new ecological niches and undergone extensive diploidisation (e.g. chromosome fusions bringing the ancestral allotetraploid number, n = 24, down to n = 15 and ribosomal loci numbers back to diploid condition). Considering the progenitors of Suaveolentes inhabit South America, this represents the colonisation of Australia by polyploids that have subsequently undergone a recent radiation into new environments. To our knowledge, this study is the first report of a substantial lag phase being investigated below the family level

    Independent, Rapid and Targeted Loss of Highly Repetitive DNA in Natural and Synthetic Allopolyploids of Nicotiana tabacum

    Get PDF
    Allopolyploidy (interspecific hybridisation and polyploidy) has played a significant role in the evolutionary history of angiosperms and can result in genomic, epigenetic and transcriptomic perturbations. We examine the immediate effects of allopolyploidy on repetitive DNA by comparing the genomes of synthetic and natural Nicotiana tabacum with diploid progenitors N. tomentosiformis (paternal progenitor) and N. sylvestris (maternal progenitor). Using next generation sequencing, a recently developed graph-based repeat identification pipeline, Southern blot and fluorescence in situ hybridisation (FISH) we characterise two highly repetitive DNA sequences (NicCL3 and NicCL7/30). Analysis of two independent high-throughput DNA sequencing datasets indicates NicCL3 forms 1.6–1.9% of the genome in N. tomentosiformis, sequences that occur in multiple, discontinuous tandem arrays scattered over several chromosomes. Abundance estimates, based on sequencing depth, indicate NicCL3 is almost absent in N. sylvestris and has been dramatically reduced in copy number in the allopolyploid N. tabacum. Surprisingly elimination of NicCL3 is repeated in some synthetic lines of N. tabacum in their forth generation. The retroelement NicCL7/30, which occurs interspersed with NicCL3, is also under-represented but to a much lesser degree, revealing targeted elimination of the latter. Analysis of paired-end sequencing data indicates the tandem component of NicCL3 has been preferentially removed in natural N. tabacum, increasing the proportion of the dispersed component. This occurs across multiple blocks of discontinuous repeats and based on the distribution of nucleotide similarity among NicCL3 units, was concurrent with rounds of sequence homogenisation

    Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4

    Get PDF
    In a large family of Czech origin, we mapped a locus for an autosomal-dominant corneal endothelial dystrophy, posterior polymorphous corneal dystrophy 4 (PPCD4), to 8q22.3-q24.12. Whole-genome sequencing identified a unique variant (c.20+544G>T) in this locus, within an intronic regulatory region of GRHL2. Targeted sequencing identified the same variant in three additional previously unsolved PPCD-affected families, including a de novo occurrence that suggests this is a recurrent mutation. Two further unique variants were identified in intron 1 of GRHL2 (c.20+257delT and c.20+133delA) in unrelated PPCD-affected families. GRHL2 is a transcription factor that suppresses epithelial-to-mesenchymal transition (EMT) and is a direct transcriptional repressor of ZEB1. ZEB1 mutations leading to haploinsufficiency cause PPCD3. We previously identified promoter mutations in OVOL2, a gene not normally expressed in the corneal endothelium, as the cause of PPCD1. OVOL2 drives mesenchymal-to-epithelial transition (MET) by directly inhibiting EMT-inducing transcription factors, such as ZEB1. Here, we demonstrate that the GRHL2 regulatory variants identified in PPCD4-affected individuals induce increased transcriptional activity in vitro. Furthermore, although GRHL2 is not expressed in corneal endothelial cells in control tissue, we detected GRHL2 in the corneal "endothelium" in PPCD4 tissue. These cells were also positive for epithelial markers E-Cadherin and Cytokeratin 7, indicating they have transitioned to an epithelial-like cell type. We suggest that mutations inducing MET within the corneal endothelium are a convergent pathogenic mechanism leading to dysfunction of the endothelial barrier and disease

    The Role of Health Behaviours Across the Life Course in the Socioeconomic Patterning of All-Cause Mortality: The West of Scotland Twenty-07 Prospective Cohort Study

    Get PDF
    Background: Socioeconomic differentials in mortality are increasing in many industrialised countries. Purpose: This study aims to examine the role of behaviours (smoking, alcohol, exercise, and diet) in explaining socioeconomic differentials in mortality and whether this varies over the life course, between cohorts and by gender. Methods: Analysis of two representative population cohorts of men and women, born in the 1950s and 1930s, were performed. Health behaviours were assessed on five occasions over 20 years. Results: Health behaviours explained a substantial part of the socioeconomic differentials in mortality. Cumulative behaviours and those that were more strongly associated with socioeconomic status had the greatest impact. For example, in the 1950s cohort, the age-sex adjusted hazard ratio comparing respondents with manual versus non-manual occupational status was 1.80 (1.25, 2.58); adjustment for cumulative smoking over 20 years attenuated the association by 49 %, diet by 43 %, drinking by 13 % and inactivity by only 1%. Conclusions: Health behaviours have an important role in explaining socioeconomic differentials in mortality. © 2013 The Author(s)

    Natural products in drug discovery: advances and opportunities

    Get PDF
    Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities
    corecore