7 research outputs found
Accelerating DNA-Based Computing on a Supramolecular Polymer
Dynamic
DNA-based circuits represent versatile systems to perform
complex computing operations at the molecular level. However, the
majority of DNA circuits relies on freely diffusing reactants, which
slows down their rate of operation substantially. Here we introduce
the use of DNA-functionalized benzene-1,3,5-tricarboxamide (BTA) supramolecular
polymers as dynamic scaffolds to template DNA-based molecular computing.
By selectively recruiting DNA circuit components to a supramolecular
BTA polymer functionalized with 10-nucleotide handle strands, the
kinetics of strand displacement and strand exchange reactions were
accelerated 100-fold. In addition, strand exchange reactions were
also favored thermodynamically by bivalent interactions between the
reaction product and the supramolecular polymer. The noncovalent assembly
of the supramolecular polymers enabled straightforward optimization
of the polymer composition to best suit various applications. The
ability of supramolecular BTA polymers to increase the efficiency
of DNA-based computing was demonstrated for three well-known and practically
important DNA-computing operations: multi-input AND gates, Catalytic
Hairpin Assembly and Hybridization Chain Reactions. This work thus
establishes supramolecular BTA polymers as an efficient platform for
DNA-based molecular operations, paving the way for the construction
of autonomous bionanomolecular systems that confine and combine molecular
sensing, computation, and actuation
Quantifying stickiness: thermodynamic characterization of intramolecular domain interactions to guide the design of förster resonance energy transfer sensors
The introduction of weak, hydrophobic interactions between fluorescent protein domains (FPs) can substantially increase the dynamic range (DR) of Forster resonance energy transfer (FRET)-based sensor systems. Here we report a comprehensive thermodynamic characterization of the stability of a range of self-associating FRET pairs. A new method is introduced that allows direct quantification of the stability of weak FP interactions by monitoring intramolecular complex formation as a function of urea concentration. The commonly used S208F mutation stabilized intramolecular FP complex formation by 2.0 kCal/mol when studied in an enhanced cyan FP (ECFP)-linker-enhanced yellow FP (EYFP) fusion protein, whereas a significantly weaker interaction was observed for the homologous Cerulean/Citrine FRET pair (Delta G(o-c)(0) = 0.62 kCal/mol). The latter effect could be attributed to two mutations in Cerulean (Y145A and H148D) that destabilize complex formation with Citrine. Systematic analysis of the contribution of residues 125 and 127 at the dimerization interface in mOrange-linker-mCherry fusion proteins yielded a toolbox of new mOrange-mCherry combinations that allowed tuning of their intramolecular interaction from very weak (Delta G(o-c)(0) = -0.39 kCal/mol) to relatively stable (Delta G(o-c)(0) = 2.2 kCal/mol). The effects of these mutations were also studied by monitoring homodimerization of mCherry variants using fluorescence anisotropy. These mutations affected intramolecular and intermolecular domain interactions similarly, although FP interactions were found to be stronger in the latter. The knowledge thus obtained allowed successful construction of a red-shifted variant of the bile acid FRET sensor BAS-1 by replacement of the self-associating Cerulean-Citrine pair by mOrange-mCherry variants with a similar intramolecular affinity. Our findings thus allow a better understanding of the subtle but important role of intramolecular domain interactions in current FRET sensors and help guide the construction of new sensors using modular design strategie
Polymorphism in benzene-1,3,5-tricarboxamide supramolecular assemblies in water:a subtle trade-off between structure and dynamics
\u3cp\u3eIn biology, polymorphism is a well-known phenomenon by which a discrete biomacromolecule can adopt multiple specific conformations in response to its environment. The controlled incorporation of polymorphism into noncovalent aqueous assemblies of synthetic small molecules is an important step toward the development of bioinspired responsive materials. Herein, we report on a family of carboxylic acid functionalized water-soluble benzene-1,3,5-tricarboxamides (BTAs) that self-assemble in water to form one-dimensional fibers, membranes, and hollow nanotubes. Interestingly, one of the BTAs with the optimized position of the carboxylic group in the hydrophobic domain yields nanotubes that undergo reversible temperature-dependent dynamic reorganizations. SAXS and Cryo-TEM data show the formation of elongated, well-ordered nanotubes at elevated temperatures. At these temperatures, increased dynamics, as measured by hydrogen-deuterium exchange, provide enough flexibility to the system to form well-defined nanotube structures with apparently defect-free tube walls. Without this flexibility, the assemblies are frozen into a variety of structures that are very similar at the supramolecular level, but less defined at the mesoscopic level.\u3c/p\u3