261 research outputs found

    Nanopores and Nanochannels: From Gene Sequencing to Genome Mapping

    Get PDF
    DNA strands can be analyzed at the single-molecule level by isolating them inside nanoscale holes. The strategy is used for the label-free and portable sequencing with nanopores. Nanochannels can also be applied to map genomes with high resolution, as shown by Jeffet et al. in this issue of ACS Nano. Here, we compare the two strategies in terms of biophysical similarities and differences and describe that both are complementary and can improve the DNA analysis for genomic research and diagnostics

    Voltage-controlled current loops with nanofluidic diodes electrically coupled to solid state capacitors

    Full text link
    [EN] We describe experimentally and theoretically voltage-controlled current loops obtained with nanofluidic diodes immersed in aqueous salt solutions. The coupling of these soft matter diodes with conventional electronic elements such as capacitors permits simple equivalent circuits which show electrical properties reminiscent of a resistor with memory. Different conductance levels can be reproducibly achieved under a wide range of experimental conditions (input voltage amplitudes and frequencies, load capacitances, electrolyte concentrations, and single pore and multipore membranes) by electrically coupling two types of passive components: the nanopores (ionics) and the capacitors (electronics). Remarkably, these electrical characteristics do not result from slow ionic redistributions within the nanopores, which should be difficult to control and would give only small conductance changes, but arise from the robust collective response of equivalent circuits. Coupling nanoscale diodes with conventional electronic elements allows interconverting ionic and electronic currents, which should be useful for electrochemical signal processing and energy conversion based on charge transport.Support from the Ministry of Economic Affairs and Competitiveness and FEDER (project MAT2015-65011-P), the Generalitat Valenciana (project Prometeo/GV/0069 for Groups of Excellence). M. A, S. N. and W. E acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, in the frame of LOEWE project iNAPO. Z. S. acknowledges the funding from the National Science Foundation (CHE 1306058).Ramirez Hoyos, P.; Gómez Lozano, V.; Cervera, J.; Nasir, S.; Ali, M.; Ensinger, W.; Siwy, Z.... (2016). Voltage-controlled current loops with nanofluidic diodes electrically coupled to solid state capacitors. RSC Advances. 6(60):54742-54746. https://doi.org/10.1039/c6ra08277gS5474254746660Fologea, D., Krueger, E., Mazur, Y. I., Stith, C., Okuyama, Y., Henry, R., & Salamo, G. J. (2011). Bi-stability, hysteresis, and memory of voltage-gated lysenin channels. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(12), 2933-2939. doi:10.1016/j.bbamem.2011.09.005Pustovoit, M. A., Berezhkovskii, A. M., & Bezrukov, S. M. (2006). Analytical theory of hysteresis in ion channels: Two-state model. The Journal of Chemical Physics, 125(19), 194907. doi:10.1063/1.2364898Ramirez, P., Cervera, J., Ali, M., Ensinger, W., & Mafe, S. (2014). Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem, 1(4), 698-705. doi:10.1002/celc.201300255Martin, C. R., & Siwy, Z. S. (2007). CHEMISTRY: Learning Nature’s Way: Biosensing with Synthetic Nanopores. Science, 317(5836), 331-332. doi:10.1126/science.1146126Hou, X., & Jiang, L. (2009). Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 3(11), 3339-3342. doi:10.1021/nn901402bZhang, H., Tian, Y., & Jiang, L. (2016). Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today, 11(1), 61-81. doi:10.1016/j.nantod.2015.11.001Chun, H., & Chung, T. D. (2015). Iontronics. Annual Review of Analytical Chemistry, 8(1), 441-462. doi:10.1146/annurev-anchem-071114-040202Tagliazucchi, M., & Szleifer, I. (2015). Transport mechanisms in nanopores and nanochannels: can we mimic nature? Materials Today, 18(3), 131-142. doi:10.1016/j.mattod.2014.10.020Misra, N., Martinez, J. A., Huang, S.-C. J., Wang, Y., Stroeve, P., Grigoropoulos, C. P., & Noy, A. (2009). Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences, 106(33), 13780-13784. doi:10.1073/pnas.0904850106Senapati, S., Basuray, S., Slouka, Z., Cheng, L.-J., & Chang, H.-C. (2011). A Nanomembrane-Based Nucleic Acid Sensing Platform for Portable Diagnostics. Topics in Current Chemistry, 153-169. doi:10.1007/128_2011_142Haywood, D. G., Saha-Shah, A., Baker, L. A., & Jacobson, S. C. (2014). Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Analytical Chemistry, 87(1), 172-187. doi:10.1021/ac504180hPérez-Mitta, G., Tuninetti, J. S., Knoll, W., Trautmann, C., Toimil-Molares, M. E., & Azzaroni, O. (2015). Polydopamine Meets Solid-State Nanopores: A Bioinspired Integrative Surface Chemistry Approach To Tailor the Functional Properties of Nanofluidic Diodes. Journal of the American Chemical Society, 137(18), 6011-6017. doi:10.1021/jacs.5b01638Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555Ali, M., Ahmed, I., Nasir, S., Ramirez, P., Niemeyer, C. M., Mafe, S., & Ensinger, W. (2015). Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores. ACS Applied Materials & Interfaces, 7(35), 19541-19545. doi:10.1021/acsami.5b06015Albrecht, T. (2011). How to Understand and Interpret Current Flow in Nanopore/Electrode Devices. ACS Nano, 5(8), 6714-6725. doi:10.1021/nn202253zLemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336jGomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific Reports, 5(1). doi:10.1038/srep09501Ramirez, P., Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Energy conversion from external fluctuating signals based on asymmetric nanopores. Nano Energy, 16, 375-382. doi:10.1016/j.nanoen.2015.07.013Tybrandt, K., Forchheimer, R., & Berggren, M. (2012). Logic gates based on ion transistors. Nature Communications, 3(1). doi:10.1038/ncomms1869Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1-6), 559-566. doi:10.1016/s1350-4487(01)00228-1Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039fRamirez, P., Gomez, V., Verdia-Baguena, C., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2016). Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions. Physical Chemistry Chemical Physics, 18(5), 3995-3999. doi:10.1039/c5cp07203dWang, D., Kvetny, M., Liu, J., Brown, W., Li, Y., & Wang, G. (2012). Transmembrane Potential across Single Conical Nanopores and Resulting Memristive and Memcapacitive Ion Transport. Journal of the American Chemical Society, 134(8), 3651-3654. doi:10.1021/ja211142eMomotenko, D., & Girault, H. H. (2011). Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores. Journal of the American Chemical Society, 133(37), 14496-14499. doi:10.1021/ja2048368Zhang, A., & Lieber, C. M. (2015). Nano-Bioelectronics. Chemical Reviews, 116(1), 215-257. doi:10.1021/acs.chemrev.5b0060

    Exact formula for currents in strongly pumped diffusive systems

    Full text link
    We analyze a generic model of mesoscopic machines driven by the nonadiabatic variation of external parameters. We derive a formula for the probability current; as a consequence we obtain a no-pumping theorem for cyclic processes satisfying detailed balance and demonstrate that the rectification of current requires broken spatial symmetry.Comment: 10 pages, accepted for publication in the Journal of Statistical Physic

    Dynamic Control of Nanoprecipitation in a Nanopipette

    Get PDF
    Studying the earliest stages of precipitation at the nanoscale is technically challenging but quite valuable as such phenomena reflect important processes such as crystallization and biomineralization. Using a quartz nanopipette as a nanoreactor, we induced precipitation of an insoluble salt to generate oscillating current blockades. The reversible process can be used to measure both kinetics of precipitation and relative size of the resulting nanoparticles. Counter ions for the highly water-insoluble salt zinc phosphate were separated by the pore of a nanopipette and a potential applied to cause ion migration to the interface. By analyzing the kinetics of pore blockage, two distinct mechanisms were identified: a slower process due to precipitation from solution, and a faster process attributed to voltage-driven migration of a trapped precipitate. We discuss the potential of these techniques in studying precipitation dynamics, trapping particles within a nanoreactor, and electrical sensors based on nanoprecipitation

    Noise Properties of Rectifying Nanopores

    Get PDF
    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation

    Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion

    Get PDF
    We study the effect of a driving force F on drift and diffusion of a point Brownian particle in a tube formed by identical ylindrical compartments, which create periodic entropy barriers for the particle motion along the tube axis. The particle transport exhibits striking features: the effective mobility monotonically decreases with increasing F, and the effective diffusivity diverges as F → ∞, which indicates that the entropic effects in diffusive transport are enhanced by the driving force. Our consideration is based on two different scenarios of the particle motion at small and large F, homogeneous and intermittent, respectively. The scenarios are deduced from the careful analysis of statistics of the particle transition times between neighboring openings. From this qualitative picture, the limiting small-F and large-F behaviors of the effective mobility and diffusivity are derived analytically. Brownian dynamics simulations are used to find these quantities at intermediate values of the driving force for various compartment lengths and opening radii. This work shows that the driving force may lead to qualitatively different anomalous transport features, depending on the geometry design

    Nanopore-based kinetics analysis of individual antibody-channel and antibody-antigen interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The UNO/RIC Nanopore Detector provides a new way to study the binding and conformational changes of individual antibodies. Many critical questions regarding antibody function are still unresolved, questions that can be approached in a new way with the nanopore detector.</p> <p>Results</p> <p>We present evidence that different forms of channel blockade can be associated with the same antibody, we associate these different blockades with different orientations of "capture" of an antibody in the detector's nanometer-scale channel. We directly detect the presence of antibodies via reductions in channel current. Changes to blockade patterns upon addition of antigen suggest indirect detection of antibody/antigen binding. Similarly, DNA-hairpin anchored antibodies have been studied, where the DNA linkage is to the carboxy-terminus at the base of the antibody's Fc region, with significantly fewer types of (lengthy) capture blockades than was observed for free (un-bound) IgG antibody. The introduction of chaotropic agents and its effects on protein-protein interactions have also been observed.</p> <p>Conclusion</p> <p>Nanopore-based approaches may eventually provide a direct analysis of the complex conformational "negotiations" that occur upon binding between proteins.</p

    A novel, fast, HMM-with-Duration implementation – for application with a new, pattern recognition informed, nanopore detector

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hidden Markov Models (HMMs) provide an excellent means for structure identification and feature extraction on stochastic sequential data. An HMM-with-Duration (HMMwD) is an HMM that can also exactly model the hidden-label length (recurrence) distributions – while the regular HMM will impose a best-fit geometric distribution in its modeling/representation.</p> <p>Results</p> <p>A Novel, Fast, HMM-with-Duration (HMMwD) Implementation is presented, and experimental results are shown that demonstrate its performance on two-state synthetic data designed to model Nanopore Detector Data. The HMMwD experimental results are compared to (i) the ideal model and to (ii) the conventional HMM. Its accuracy is clearly an improvement over the standard HMM, and matches that of the ideal solution in many cases where the standard HMM does not. Computationally, the new HMMwD has all the speed advantages of the conventional (simpler) HMM implementation. In preliminary work shown here, HMM feature extraction is then used to establish the first pattern recognition-informed (PRI) sampling control of a Nanopore Detector Device (on a "live" data-stream).</p> <p>Conclusion</p> <p>The improved accuracy of the new HMMwD implementation, at the same order of computational cost as the standard HMM, is an important augmentation for applications in gene structure identification and channel current analysis, especially PRI sampling control, for example, where speed is essential. The PRI experiment was designed to inherit the high accuracy of the well characterized and distinctive blockades of the DNA hairpin molecules used as controls (or blockade "test-probes"). For this test set, the accuracy inherited is 99.9%.</p
    corecore